Advertisement

Estimation of nuclear DNA content and its variation among Indian Tea accessions by flow cytometry

  • Suman Sharma
  • Sandeep Kaushik
  • Soom Nath Raina
Research Article

Abstract

Nuclear DNA content and genome size variation among 36 Indian tea accessions were analyzed by flow cytometry. Initial standardization of protocols for isolation of nuclei, DNA staining and selection of an internal standard for tea accessions which have significantly high amount of phenolic secondary metabolites in their cytosol was carried out. Results obtained revealed that 2C DNA content of Indian tea is 7.46 pg which corresponds to 1C genome size of 3673 Mb. Inter accession variation in 2C DNA content was also observed among 35 diploid taxa ranging from 7.23 to 7.73 pg which was significant at 1% probability level. The 2C DNA content of triploid (UPASI 3) was observed to be 11.47 pg which is concurrent with the expected value. Results obtained showed that Assam and Cambod type tea accession have higher 2C DNA content of 7.73 pg whereas Assam Cambod hybrids and Assam China hybrids have reduction in DNA content with 2C amounts, 7.23 and 7.32 pg DNA respectively. The present study suggests that the species involved in origin of Indian tea must have differed in their genome sizes owing to significant inter accession variation in nuclear DNA content.

Keywords

Indian Tea Internal standard 2C DNA Genome size 

References

  1. Arumugnathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  2. Balasaravanan T, Pius PK, Rajkumar R, Muraleedharan N, Shasany AK (2003) Genetic diversity among south Indian tea germplasm (Camellia sinensis, C. assamica and C. assamica spp. Lasiocalyx)using AFLP markers. Plant Sci 165:365–372CrossRefGoogle Scholar
  3. Banerjee B (1992) Botanical classification of tea. In: Wilson K, Clifford N (eds) Tea: cultivation to consumption. Chapman and Hall, LondonGoogle Scholar
  4. Baranyi M, Greilhuber J (1995) Flow cytometric analysis of genome size variation in cultivated and wild Pisumsativum (Fabaceae). Plant Syst Evol 194:231–239CrossRefGoogle Scholar
  5. Barua PK (1965a) Classification of tea palnts: species hybrids. Two Bud 12:13–27Google Scholar
  6. Barua PK (1965b) classification of tea plants: species hybrids. Two Bud 12:13–27Google Scholar
  7. Becak W, Becak ML, Laville D, Schrieber G (1967) Further studied on polyploidy amphibians (Ceratophrydidae). Chromosoma 23:14–23CrossRefPubMedGoogle Scholar
  8. Bennett MD (1985) Intraspecific variation in DNA amount and nucleotypic dimension in plant genetics. In: Freeling M (ed) Plant genetics. Alan R. Lise, New York, pp 283–302Google Scholar
  9. Bennett ST, Bennett MD (1992) Variation in nuclear DNA amount between wild and cultivated populations of Milliumeffusum (2n = 28). Genome 35:1050–1053CrossRefGoogle Scholar
  10. Bennett MD, Leitch IJ (2011) Nuclear DNA amount in angiosperms: target trends and tomorrow. Ann Bot 107:467–590CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bennett MD, Johnston S, Hodnett GL, Price HJ (2000) Allium cepaL. cutivars from four continents compared by flow cytometry show nuclear DNA constancy. Ann Bot 85:351–357CrossRefGoogle Scholar
  12. Bennetzen JL, Kellogg EA (1997) Do Plants have a one way ticket to genomic obesity? Plant Cell 9:1509–1514CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bennetzen J, Ma J, Devos K (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bhaskaran S, Swaminathan MS (1960) Polyploidy and radiosensitivity in wheat and barley. Genetica (The Hague) 32:1–32Google Scholar
  15. Cauderon Y (1997) Allopolypoidy. In: Proceedings of the 8th Eucarpia congress. Madrid, Spain. pp 131–143Google Scholar
  16. Charles HB Jr (1981) Seed to civilization: the story of food. Free-man, San FranciscoGoogle Scholar
  17. Chen L, Zhou Z, Yang Y (2007) Genetic improvement and breeding of tea plant (Camellia sinensis) in China: from individual selection to hybridization and molecular breeding. Euphytica 154:239–248CrossRefGoogle Scholar
  18. Christensen B (1996) Cytophometric studies on the DNA content in diploid and polyploidy Enchytraeideae (oligocheta). Chromosoma 18:305–315CrossRefGoogle Scholar
  19. Costich DE, Ortiz R, Meagher TR, Bruederle LP, Vorsa N (1993) Determination of ploidy level and nuclear DNA content in blueberry by flow cytometry. TheorAppl Genet 86:1001–1006CrossRefGoogle Scholar
  20. Cullis CA (1983) Enviromentally induced DNA changes in plants. CRC Rev Plant Sci 1:117–131CrossRefGoogle Scholar
  21. Cullis CA (2005) Mechanisms and control of rapid genomic changes in flax. Ann Bot 95:201–206CrossRefPubMedPubMedCentralGoogle Scholar
  22. Darlington CD (1958) The evolution of gentic systems. Oliver and Boyd, EdinburghGoogle Scholar
  23. Darlington CD (1963) Chromosome botany and the origin of cultivated plants. George Allen and Unwin ltd, LondonGoogle Scholar
  24. Dickson EE, Arumuganathan K, Kresovich S, Doyle JJ (1992) Nuclear DNA content variation within the rosaceae. Am J Bot 79(9):1081–1086CrossRefGoogle Scholar
  25. Dolezel J, Binarova P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31:113–120CrossRefGoogle Scholar
  26. Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51:127–128CrossRefPubMedGoogle Scholar
  27. Dowrick GL, El Bayoumi AS (1969) Nucleic acid content and chromosome morphology in Chrysanthemum. Genet Res 13: 241–250CrossRefGoogle Scholar
  28. Ellis RT (1995) Tea. In: Smart J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific and Technical, Harlow, pp 22–27Google Scholar
  29. Ellul P, Boscaiu M, Vicente O, Moreno V, Rosello JA (2002) Intra- and interspecific variation in DNA content in Cistus (Cistaceae). Ann Bot 90:345–351CrossRefPubMedPubMedCentralGoogle Scholar
  30. Evans GM (1968) Nuclear changes in flax. Heredity 23:25–38CrossRefGoogle Scholar
  31. Galbraith DW et al (1983) Rapid flow cytometric analysis of cell cycle in intact plant tissues. Science 220:1049–1051CrossRefPubMedGoogle Scholar
  32. Graham MJ, Nickell CD, Rayburn AL (1994) Relationship between genome size and maturity group in soyabean. Theor Appl Genet 88:429–432PubMedGoogle Scholar
  33. Grant WF (1969) Decreased DNA content in birch chromosome at higher ploidy level as determined by cytophotometry. Chromosoma 26:326–336CrossRefGoogle Scholar
  34. Gregory TR (2003) Is small indel bias a determinant of genome size? Trends Genet 19:485–488CrossRefPubMedGoogle Scholar
  35. Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot 95:91–98CrossRefPubMedPubMedCentralGoogle Scholar
  36. Greilhuber J, Dolezel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the term ‘genome size’ and C-value to describe nuclear DNA contents. Ann Bot 95:225–260Google Scholar
  37. Huang H, Tong Y, Zhang Q, Gao L-Z (2013) Genome size variation among and within Camellia species by using flow cytometic analysis. PLoS ONE 8(5):e64981CrossRefPubMedPubMedCentralGoogle Scholar
  38. Johnston JS, Bennett MD, Rayburn AL, Galbraith DV, Price HJ (1999) Reference standards for determination of DNA content of plant nuclei. Am J Bot 86: 609–613CrossRefPubMedGoogle Scholar
  39. Kamemoto H (1987) Genome breeding in Dendrobiumorchids. In: Chang WN, Opena RT (eds) The breeding of horticultural crops, vol 35. FFTC, Taipei, pp 182–188Google Scholar
  40. Krahulcova A, Krahulec F (2000) Offspring diversity in Hieracium subgen. Pilosella (Asteraceae): new cytotypes from hybridization experiments and from open pollination. Fragm Flor Geobot 45:239–255Google Scholar
  41. Laurie DA, Bennett MD (1985) Nuclear DNA content in the genera Zea and Sorghum. Intergeneric, interspecific and intraspecific variation. Heredity 55:307–313CrossRefGoogle Scholar
  42. Le Thierry d’Ennequin M, Panaud O, Brown S, Siljak-Yakovlev A, Sarr A (1988) First evaluation of DNA content in settaria genus by flow cytometry. J Hered 89:556–559CrossRefGoogle Scholar
  43. Lee JH, Yen Y, Arumugnathan K, Baenziger PS (1997) DNA content of wheat monosomics at interphase estimated by flow cytometry. Theor Appl Genet 95:1300–1304CrossRefGoogle Scholar
  44. Loureiro J, Rodriguez E, Dolezel J, Santos C (2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot 98:679–689CrossRefPubMedPubMedCentralGoogle Scholar
  45. Loureiro J, Suda J, Dolezel J, Santos CF (2007) A Plant DNA flow cytometry database. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley–VCH, Weinheim, Germany, pp 423–438Google Scholar
  46. Lysak MA, Rostkova A, Dixon JM, Rossi G, Dolezel J (2000) Limited genome size variation in Sesleria albicans. Ann Bot 86:399–403CrossRefGoogle Scholar
  47. Mc William JR (1974) Interspecific hybridization in Phalaris. In: Proceeding of the XII international grassland congress, pp 243–249Google Scholar
  48. Moscone EA, Baranyi M, Elbert I, Greilhuber J, Ehrendorfer F (2003) Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and Feulgen densitometry. Ann Bot 92:21–29CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pai RA, Swaminathan MS (1960) Differential radioinsensitivity among the probable genome donors of bread wheat. Evolution 14:427–432CrossRefGoogle Scholar
  50. Paul S, Wachira FN, Powell W, Waugh R (1997) Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L) O. Kuntze) revealed by AFLP markers. Theor Appl Genet 94:255–263CrossRefGoogle Scholar
  51. Piegu B, Guyot R, Picault N, Roulin A, Saniyal A (2006) Doubling genome size without polyploidization : dynamics of retrotransposition—driven genomic expansions in oryzaaustraliensis, a wild relative of rice. Genome Res 17:1072–1081Google Scholar
  52. Price HJ, Chambers KL, Bachmann K (1981) Genome size variation in Microseriesbigelovii (Asteraceae). Bot Gaz 142:156–159CrossRefGoogle Scholar
  53. Price HJ, Chamber KL, Bachmann K, Riggs J (1983a) a). Inheritance of nuclear 2C DNA content variation in interspecific and intraspecific hybrids of Microseris (Asteraceae). Am J Bot 70:1133–1138CrossRefGoogle Scholar
  54. Price HJ, Chamber KL, Bachmann K, Riggs J (1983b) b). Inheritance of nuclear 2c DNA content in a cross between Microseridouglasii and M. bigelovii (Asteraceae). Biol Zentralbau 104:269–276Google Scholar
  55. Raina SN, Ogihara Y (1994) Chloroplast DNA diversity in Viciafaba and its close wild relatives: implications of reassessment. Theor Appl Genet 88:261–266CrossRefPubMedGoogle Scholar
  56. Raina SN, Ahuja PS, Sharma RK, Das SC, Bhardwaj P, Negi R, Sharma V, Singh SS, Sud RK, Kalia RK, Pandey V, Banik J, Razdan V, Sehgal D, Dar TH, Kumar A, Bali S, Bhat V, Sharma S, Prasanna BM, Goel S, Negi MS, Vijyan P, Tripathy SB, Bera B, Hazarika M, Mandal AKA, Kumar RR, Vijyan D, Ramkumar S, Chowdhary BR, Mandi SS (2011) Genetic structure and diversity of Indian hybrid tea. Genet Resour Crop Evol 59:1527–1541CrossRefGoogle Scholar
  57. Rayburn AL, Auger JA (1990) Genome size variation in Zea mays ssp. Mays adapted to different altitudes. Theor Appl Genet 79:470–474CrossRefPubMedGoogle Scholar
  58. Rayburn AL, Price HJ, Smith JD, Gold JR (1985) C-band heterochromatin and DNA content in Zea mays. Am J Bot 72:1610–1617CrossRefGoogle Scholar
  59. Rayburn L, Julie Auger A, Elizabeth A, Hepburn Anjus G (1989) Detection of interspecific DNA content variation in Zea mays L. by flow cytometry. J Exp Bot 40(220):1179–1183CrossRefGoogle Scholar
  60. Roboerts EAH, Wight W, Wood DJ (1958) Paper chromatography as an aid to the identification of Thea camellias. New Phytol 57:211–225CrossRefGoogle Scholar
  61. Sharma S, Raina SN (2006) Chromosome constitution of some Indian tea clones. Int J Tea Sci 5:21–28Google Scholar
  62. Sharma RK, Negi MS, Sharma S, Bhardwaj P, Kumar R, Bhattacharya E, Tripathi SB, Vijayan D, Barua AR, Das SC, Bera B, Rajkumar R, Thomas J, Sud RK, Muraleedharan N, Hazarika M, Lakshmikumaran M, Raina SN, Ahuja PS (2010) AFLP based genetic diversity assessment of commercially important tea germplasmin India. Biochem Genet 48:549–564CrossRefPubMedGoogle Scholar
  63. Singh KP, Raina SN, Singh AK (1996) Variation in chromosomal DNA associated with the evolution of Arachisspecies. Genome 39:890–897CrossRefPubMedGoogle Scholar
  64. Smarda P, Bures P (2006) Intraspecific DNA content variability in Festucapallenson different geographical scales and ploidy levels. Ann Bot 98:665–678CrossRefPubMedPubMedCentralGoogle Scholar
  65. Smarda P, Bures P (2010) Understanding intraspecific variation in genome size in plants. Preslia 82:41–61Google Scholar
  66. Southern DI (1967) Species relationship in the genus Tuplipa. Chromosoma 23:80–94CrossRefGoogle Scholar
  67. Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New YorkGoogle Scholar
  68. Suda J, Krahulcova A, Travnicek P, Rosenbaumova R, Peckert T et al (2007) Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) an inferred by flow cytometry. Ann Bot 100:1323–1335CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tanaka J, Taniguchi F (2006) Estimation of the genome size of tea (Camelliasinensis) Camellia (C. japonica), and their interspecific hybrids by flow cytometry. J Tea Res 101:1–7CrossRefGoogle Scholar
  70. Wachira FN, Waugh R, Hackett CA, Powell W (1995) Detection of genetic diversity in tea (Camellia sinensisis) using RAPD markers. Genome 38:201–210CrossRefPubMedGoogle Scholar
  71. Walbot V, Cullis CA (1985) Rapid genomic changes in higher plants. Ann Rev Plant Physiol 36:61–68CrossRefGoogle Scholar
  72. Webster GT, Buckner RC (1971) Cytology and agronomic performance of Lolium-Festuca hybrid derivatives. Crop Sci 11:109–112CrossRefGoogle Scholar
  73. Wendel JF, Cronn RC, Johnston JS, Price HJ (2002) Feast and femine in plant genomes. Genetica 115:37–47CrossRefPubMedGoogle Scholar
  74. Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081CrossRefPubMedPubMedCentralGoogle Scholar
  75. Yamaguchi Y, Tsunoda S (1969) Nuclear volume, nuclear DNA content and radioinsenstivity in Brassica and allied genera. Jpn J Breed 19:350–356CrossRefGoogle Scholar

Copyright information

© Prof. H.S. Srivastava Foundation for Science and Society 2018

Authors and Affiliations

  • Suman Sharma
    • 1
  • Sandeep Kaushik
    • 2
  • Soom Nath Raina
    • 3
  1. 1.Department of Botany, Ramjas CollegeUniversity of DelhiNew DelhiIndia
  2. 2.Department of Environmental ScienceIndira Gandhi National Tribal UniversityLalpur, AmarkantakIndia
  3. 3.Amity Institute of BiotechnologyAmity UniversityNoidaIndia

Personalised recommendations