Advertisement

Memetic Computing

, Volume 10, Issue 2, pp 165–176 | Cite as

A hybrid metaheuristic algorithm for generalized vertex cover problem

  • Shuli Hu
  • Ruizhi Li
  • Peng Zhao
  • Minghao YinEmail author
Regular Research Paper

Abstract

The generalized vertex cover problem (GVCP) extends classic vertex cover problems to take both vertex and edge weights into consideration in the objective function. The GVCP consists in finding a vertex subset such that the sum of vertex weights together with all the corresponding edge weights is minimized. In this paper, we proposed a hybrid metaheuristic algorithm to solve GVCP (MAGVCP for short) that is based on evolutionary search and iterated neighborhood search. The algorithm uses population initializing procedure to produce high quality solutions, applies a dedicated crossover to generate offspring solutions, and finally utilizes an iterated best chosen neighborhood search to find better solutions. Experiments carried on random instances and DIMACS instances demonstrate the effectiveness of the proposed algorithm.

Keywords

Hybrid metaheuristic algorithm Generalized vertex cover problem Neighborhood search Crossover 

Notes

Acknowledgements

The authors of this paper wish to extend their sincere gratitude to all anonymous reviewers for their efforts. This work was supported in part by NSFC (under Grant Nos. 61370156, 61503074, 61403076, 61402070, and 61403077), the Program for New Century Excellent Talents in University (NCET-13-0724), the Youth Foundation of Northeast Normal University (1205098).

References

  1. 1.
    Richter S, Helmert M, Gretton C (2007) A stochastic local search approach to vertex cover. In: Proceedings of KI-07, pp 412–426Google Scholar
  2. 2.
    Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher JW (eds) Complexity of computer computations. Plenum Press, pp 85–103Google Scholar
  3. 3.
    Wang Y, Cai S, Yin M (2016) Two efficient local search algorithms for maximum weight clique problem. In: Proceedings of AAAI-16, pp 805–811Google Scholar
  4. 4.
    Cai S, Su K, Chen Q (2010) EWLS: a new local search for minimum vertex cover. In: Proceedings of AAAI-10, pp 45–50Google Scholar
  5. 5.
    Guo J, Niedermeier R, Wernicke S (2007) Parameterized complexity of vertex cover variants. Theory Comput Syst 41(3):501–520MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hassin R, Levin A (2006) The minimum generalized vertex cover problem. ACM Trans Algorithms 2:66–78MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kochenberger G, Lewis M, Glover F et al (2015) Exact solutions to generalized vertex covering problems: a comparison of two models. Optim Lett 9(7):1331–1339MathSciNetCrossRefGoogle Scholar
  8. 8.
    Milanovic M (2010) Solving the generalized vertex cover problem by genetic algorithm. Comput Inform 29:1251–1265Google Scholar
  9. 9.
    Chandu DP (2014) A parallel genetic algorithm for generalized vertex cover problem. arXiv:1411.7612
  10. 10.
    Li R, Hu S, Wang Y et al (2016) A local search algorithm with tabu strategy and perturbation mechanism for generalized vertex cover problem. Neural Comput Appl. doi: 10.1007/s00521-016-2324-6
  11. 11.
    Zhang X, Li X, Wang J (2016) Local search algorithm with path relinking for single batch-processing machine scheduling problem. Neural Comput Appl. doi: 10.1007/s00521-016-2339-z CrossRefGoogle Scholar
  12. 12.
    Samma H, Lim CP, Saleh JM et al (2016) A memetic-based fuzzy support vector machine model and its application to license plate recognition. Memet Comput 1–17. doi: 10.1007/s12293-016-0187-0
  13. 13.
    Mohanty PK, Parhi DR (2015) A new hybrid optimization algorithm for multiple mobile robots navigation based on the CS-ANFIS approach. Memet Comput 7(4):255–273CrossRefGoogle Scholar
  14. 14.
    Wang G-G, Guo L, Gandomi AH, Hao G-S, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang YY, Li RZ, Zhou YP, Yin MH (2016) A path cost-based GRASP for minimum independent dominating set problem. Neural Comput Appl. doi: 10.1007/s00521-016-2324-6 CrossRefGoogle Scholar
  16. 16.
    Wang Y, Ouyang D, Zhang L, Yin M (2015) A novel local search for unicost set covering problem using hyperedge configuration checking and weight diversity. Sci China Inf Sci. doi: 10.1007/s11432-015-5377-8
  17. 17.
    Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871CrossRefGoogle Scholar
  18. 18.
    Wang Y, Yin M, Ouyang D et al (2016) A novel local search algorithm with configuration checking and scoring mechanism for the set k-covering problem. Int Trans Oper Res. doi: 10.1111/itor.12280
  19. 19.
    Wang G-G, Gandomi AH, Alavi AH (2014) Stud krill herd algorithm. Neurocomputing 128:363–370CrossRefGoogle Scholar
  20. 20.
    Li R, Shuli H, Gao J, Zhou Y, Wang Y, Yin M (2016) GRASP for connected dominating set problems. Neural Comput Appl. doi: 10.1007/s00521-016-2429-y CrossRefGoogle Scholar
  21. 21.
    Dan AC, Bacardit J (2013) Integrating memetic search into the BioHEL evolutionary learning system for large-scale datasets. Memet Comput 5(2):95–130CrossRefGoogle Scholar
  22. 22.
    Nama S, Saha AK, Ghosh S (2016) A hybrid symbiosis organisms search algorithm and its application to real world problems. Memet Comput 1–20. doi: 10.1007/s12293-016-0194-1
  23. 23.
    Blum C, Puchinger J, Raidl GR et al (2011) Hybrid metaheuristics in combinatorial optimization: a survey. Appl Soft Comput 11(6):4135–4151CrossRefGoogle Scholar
  24. 24.
    Xie S, Wang Y (2014) Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wirel Pers Commun 78(1):231–246CrossRefGoogle Scholar
  25. 25.
    Chen B, Shu H, Coatrieux G, Chen G, Sun X, Coatrieux J-L (2015) Color image analysis by quaternion-type moments. J Math Imaging Vis 51(1):124–144MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295(1):395–406CrossRefGoogle Scholar
  27. 27.
    Zhangjie F, Sun X, Qi L, Lu Z, Jiangang S (2015) Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans Commun E98–B(1):190–200Google Scholar
  28. 28.
    Gu B, Sheng VS (2016) A robust regularization path algorithm for \(\nu \)-support vector classification. IEEE Trans Neural Netw Learn Syst. doi: 10.1109/TNNLS.2016.2527796
  29. 29.
    Vanneschi L (2014) Improving genetic programming for the prediction of pharmacokinetic parameters. Memet Comput 6(4):255–262. doi: 10.1007/s12293-014-0143-9 CrossRefGoogle Scholar
  30. 30.
    Jadon SS, Bansal JC, Tiwari R et al (2015) Accelerating artificial bee colony algorithm with adaptive local search. Memet Comput 7(3):215–230. doi: 10.1007/s12293-015-0158-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Computer Science and Information TechnologyNortheast Normal UniversityChangchunChina
  2. 2.Key Laboratory of Applied Statistics of MOENortheast Normal UniversityChangchunChina

Personalised recommendations