Advertisement

Evaluation of COMT Gene rs4680 Polymorphism as a Risk Factor for Endometrial Cancer

  • Pradeep Kumar
  • Garima Singh
  • Vandana Rai
Original Research Article
  • 7 Downloads

Abstract

Catechol-O-methyletransferase (COMT) enzyme is involved in the inactivation of catecholamine and catechol estrogens. Catechol estrogens have carcinogenic potential and DNA damaging ability. Several studies investigated COMT Val158Met polymorphism as risk factor for endometrial cancer but the results were inconclusive. Hence the objective of present study was to find out exact association between COMT gene Val158Met polymorphism and endometrial cancer by a meta-analysis. Pubmed, Google Scholar, Springer Link and Science Direct databases were searched for case–control articles which investigated COMT Val158Met polymorphism in endometrial cancer cases. All statistical analysis was performed using MetaAnalyst and Mix programs. The results of meta-analysis suggested that there were no association between COMT Val158Met polymorphism and endometrial cancer risk (allele contrast model—ORA vs. G = 0.97, 95% CI = 0.86–1.10, p = 0.67; co-dominant model—ORAG vs. GG = 0.91, 95% CI = 0.77–1.06, p = 0.23; homozygote model—ORAA vs. GG = 1.01, 95% CI = 0.84–1.19, p = 0.29; dominant model—ORAA+AG vs. GG = 0.93, 95% CI = 0.77–1.11, p = 0.43; recessive model—ORAA vs. AG+GG = 1.02, 95% CI = 0.89–1.20, p = 0.62). Publication bias was absent. Subgroup analysis based on source of controls was also performed. In conclusion, results of present meta-analysis showed no association between COMT Val158Met polymorphism and susceptibility to endometrial cancer.

Keywords

Endometrial cancer COMT Val158Met Meta-analysis Polymorphism 

Notes

Compliance with Ethical Standards

Conflict of interest

None.

References

  1. 1.
    Sorosky JI. Endometrial cancer. Obstet Gynecol. 2008;111:436–47.CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Huber A, Bentz EK, Schneeberger C, Huber JC, Hefler L, Tempfer C. Ten polymorphisms of estrogen-metabolizing genes and a family history of colon cancer—an association study of multiple gene-gene interactions. J Soc Gynecol Investig. 2005;12(7):e51–4.CrossRefPubMedGoogle Scholar
  4. 4.
    Chang I, Liu J, Majid S, Saini S, Zaman MS, Yamamura S, et al. Catechol-O-methyltransferase mediated metabolism of 4-hydroxyestradiol inhibits the growth of human renal cancer cells through the apoptotic pathway. Carcinogenesis. 2012;33:420–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Grossman MH, Emanuel BS, Budarf ML. Chromosomal mapping of the human catechol-O-methyltransferase gene to 22q11.1–q11.2. Genomics. 1992;12(4):822–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Lundstrom K, Tenhunen J, Tilgmann C, Karhunen T, Panula P, Ulmanen I. Cloning, expression and structure of catechol-O- methyltransferase. Biochim Biophys Acta. 1995;1251:1–10.CrossRefPubMedGoogle Scholar
  7. 7.
    Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics. 1996;6(3):243–50.CrossRefPubMedGoogle Scholar
  8. 8.
    Dawling S, Roodi N, Mernaugh RL, Wang X, Parl FF. Catechol-O-methyltransferase (COMT)-mediated metabolism of catechol estrogens: comparison of wild-type and variant COMT isoforms. Can Res. 2001;61(18):6716–22.Google Scholar
  9. 9.
    Huang CG, Iv GD, Liu T, Liu Q, Feng JG, Lu XM. Polymorphisms of COMT and XPD and risk of esophageal squamous cell carcinoma in a population of Yili Prefecture, in Xinjiang, China. Biomark Biochem Indic Expo Resp Suscept Chem. 2011;16(1):37–41.Google Scholar
  10. 10.
    Zhou YH. Association between polymorphisms of estrogen receptors and estrogen-metabolic enzymes and susceptibility to colorectal cancer in China. Chongqing: Third Military Medical University; 2009.Google Scholar
  11. 11.
    Yuan X, Zhou G, Zhai Y, Xie W, Cui Y, Cao J, et al. Lack of association between the functional polymorphisms in the estrogen-metabolizing genes and risk for hepatocellular carcinoma. Cancer Epidemiol Biomark Prev. 2008;17(12):3621–7.CrossRefGoogle Scholar
  12. 12.
    Zienolddiny S, Campa D, Lind H, Ryberg D, Skaug V, Stangeland LB, et al. A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of non-small cell lung cancer in smokers. Carcinogenesis. 2008;29(6):1164–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang Y, Hua S, Zhang A, Kong X, Jiang C, Deng D, Wenlong B. Association between polymorphisms in COMT, PLCH1, and CYP17A1, and non-small-cell lung cancer risk in Chinese nonsmokers. Clin Lung Cancer. 2013;14(1):45–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Lajin B, Hamzeh AR, Ghabreau L, Mohamed A, Moustafa AE, Alachkar A. Catechol-O-methyltransferase Val 108/158 Met polymorphism and breast cancer risk: a case control study in Syria. Breast Cancer. 2013;20(1):62–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Son BH, Kim MK, Yun YM, Kim HJ, Yu JH, Ko BS, et al. Genetic polymorphism of ESR1 rs2881766 increases breast cancer risk in Korean women. J Can Res Clin Oncol. 2015;141(4):633–45.CrossRefGoogle Scholar
  16. 16.
    Delort L, Chalabi N, Satih S, Rabiau N, Kwiatkowski F, Bignon Y, et al. Association between genetic polymorphisms and ovarian cancer risk. Anticancer Res. 2008;28(5B):3079–81.PubMedGoogle Scholar
  17. 17.
    Fontana L, Delort L, Joumard L, Rabiau N, Bosviel R, Satih S, et al. Genetic polymorphisms in CYP1A1, CYP1B1, COMT, GSTP1 and NAT2 genes and association with bladder cancer risk in a French cohort. Anticancer Res. 2009;29(5):1631–5.PubMedGoogle Scholar
  18. 18.
    Wolpert BJ, Amr S, Saleh DA, Ezzat S, Gouda I, Loay I, et al. Associations differ by sex for catechol-O-methyltransferase genotypes and bladder cancer risk in South Egypt. Urol Oncol. 2013;30(6):841–7.CrossRefGoogle Scholar
  19. 19.
    Heck JE, Moore LE, Lee YC, McKay JD, Hung RJ, Karami S, et al. Xenobiotic metabolizing gene variants and renal cell cancer: a multicenter study. Front Oncol. 2012;2:16–20.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang H, Zhang Z, Wu J, Xu Y, Cheng R, Li L. Lack of association between COMT Val158Met polymorphism and prostate cancer susceptibility. Urol Int. 2013;91(2):213–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Ferlin A, Ganz F, Pengo M, Selice R, Frigo AC, Foresta C. Association of testicular germ cell tumor with polymorphisms in estrogen receptor and steroid metabolism genes. Endocr Relat Cancer. 2010;17(1):17–25.CrossRefPubMedGoogle Scholar
  22. 22.
    Vandenbergh DJ, Rodriguez LA, Miller IT, Uhl GR, Lachman HM. High-activity catechol-O-methyltransferase allele is more prevalent in polysubstance abusers. Am J Med Genet. 1997;74:439–42.CrossRefPubMedGoogle Scholar
  23. 23.
    Kunugi H, Vallada HP, Hoda F, Kirov G, Gill M, Aitchison KJ, et al. No evidence for an association of affective disorders with high- or low-activity allele of catechol-O-methyltransferase gene. Biol Psychiatry. 1997;42:282–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Chen CH, Lee YR, Wei FC, Koong FJ, Hwu HG, Hsiao KJ. Association study of NlaIII and MspI genetic polymorphisms of catechol-O-methyltransferase gene and susceptibility to schizophrenia. Biol Psychiatry. 1997;41:985–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Kumar P, Yadav U, Rai V. Prevalence of COMT Val158Met polymorphism in Eastern UP population. Cell Mol Biol (Noisy-le-grand). 2017;63(6):21–4.CrossRefGoogle Scholar
  26. 26.
    Szyllo K, Smolarz B, Romanowicz-Makowska H, Przybylowska K, Lewy J, Kulig B. The risk of endometrial cancer appearance and CYP19 and COMT gene polymorphism. Pol MerkurLekarski. 2007;22(129):208–10.Google Scholar
  27. 27.
    Zhao XM, Xie MQ, Yang DZ, Wang LA. Polymorphism of catechol-O-methyltransferase gene in relation to the risk of endometrial cancer. Zhonghua Fu Chan KeZaZhi. 2007;42:116–9.Google Scholar
  28. 28.
    Li L, Li FX, Zhang N, Du YF. Association of gene polymorphism in cytochrome P450 1B1 and COMT, with the expression of mRNA and susceptibility to endometrial cancer in Chinese. J Hebei Med Univ. 2010;31(5):1433–7.Google Scholar
  29. 29.
    Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Nat Cancer Inst. 1959;22(4):719–48.PubMedGoogle Scholar
  30. 30.
    DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1968;7:177–88.CrossRefGoogle Scholar
  31. 31.
    Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.CrossRefGoogle Scholar
  32. 32.
    Whitehead A. Meta-analysis of controlled clinical trials. Chichester: Wiley; 2002.CrossRefGoogle Scholar
  33. 33.
    Thakkinstian A, McEvoy M, Minelli C, Gibson P, Hancox B, Duffy D, et al. Systematic review and meta-analysis of the association between β2- adrenoceptor polymorphisms and asthma: a HuGE review. Am J Epidemiol. 2005;162:201–11.CrossRefPubMedGoogle Scholar
  34. 34.
    Jiang DK, Ren WH, Yao L, Wang WZ, Peng B, Yu L. Meta-analysis of association between TP53 Arg72Pro polymorphism and bladder cancer risk. Urology. 2010;76:765–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.CrossRefPubMedGoogle Scholar
  36. 36.
    Egger M, Smith GD, Schneider M, Minder C. Bias in meta- analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wallace BC, Dahabreh IJ, Trikalinos TA, Lau J, Trow P, Schmid CH. Closing the gap between methodologists and end-users: R as a computational back-end. J Stat Softw. 2013;49:1–15.Google Scholar
  38. 38.
    Bax L, Yu LM, Ikeda N, Tsuruta H, Moons KG. Development and validation of MIX: comprehensive free software for meta-analysis of causal research data. BMC Med Res Methodol. 2006;6:50–2.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283:2008–12.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    McGrath M, Hankinson SE, Arbeitman L, Colditz GA, Hunter DJ, De Vivo I. Cytochrome P450 1B1 and catechol-O-methyltransferase polymorphisms and endometrial cancer susceptibility. Carcinogenesis. 2004;25(4):559–65.CrossRefPubMedGoogle Scholar
  41. 41.
    Zimarina TC, Kristensen VN, Imianitov EN, Bershtein LM. Polymorphisms of CYP1B1 and COMT in breast and endometrial cancer. Mol Biol. 2004;38:386–93.CrossRefGoogle Scholar
  42. 42.
    Doherty JA, Weiss NS, Freeman RJ, Dightman DA, Thornton PJ, Houck JR, et al. Genetic factors in catechol estrogen metabolism in relation to the risk of endometrial cancer. Cancer Epidemiol Biomarkers Prev. 2005;14:357–66.CrossRefPubMedGoogle Scholar
  43. 43.
    Tao MH, Cai Q, Xu WH, Kataoka N, Wen W, Zheng W, et al. Cytochrome P450 1B1 and catechol O-methyltransferase genetic polymorphisms and endometrial cancer risk in Chinese women. Cancer Epidemiol Biomark Prev. 2006;15(12):2570–3.CrossRefGoogle Scholar
  44. 44.
    Liu J, Yang X, Qu X, Li H. Relation among single nucleotide metabolizing genes CYPl7, COMT and endometrial adenocarcinoma risk in Chinese. J Shandong Univ. 2007;45:18–21.Google Scholar
  45. 45.
    Hirata H, Hinoda Y, Okayama N, Suehiro Y, Kawamoto K, Nobuyuki Kikuno N, et al. COMT polymorphisms affecting protein expression are risk factors for endometrial cancer. Mol Carcinog. 2008;47(10):768–74.CrossRefPubMedGoogle Scholar
  46. 46.
    Ashton KA, Meldrum CJ, McPhillips ML, Suchy J, Kurzawski G, Lubinski J, et al. The association of the COMT V158M polymorphism with endometrial/ovarian cancer in HNPCC families adhering to the amsterdam criteria. Hered Cancer Clin Pract. 2006;4(2):94–102.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zintzaras E, Sakelaridis N. Is 472G/A catechol-O-methyl-transferase gene polymorphism related to panic disorder? Psychiatry Genet. 2007;17(5):267–73.CrossRefGoogle Scholar
  48. 48.
    Axelrod J, Tomchick R. Enzymatic O-methylation of epinephrine and other catechols. J Biol Chem. 1958;233:702–5.PubMedGoogle Scholar
  49. 49.
    Rai V. Polymorphism in folate metabolic pathway gene as maternal risk factor for down syndrome. Int J Biol Med Res. 2011;2(4):1055–60.Google Scholar
  50. 50.
    Rai V. Methylenetetrahydrofolate reductase C677T polymorphism and recurrent pregnancy loss risk in Asian population: a meta-analysis. Indian J Clin Biochem. 2016;31:402–13.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Rai V. Maternal methylenetetrahydrofolate reductase (MTHFR) gene A1298C polymorphism and risk of nonsyndromic Cleft lip and/or Palate (NSCL/P) in offspring: a meta-analysis. Asian J Med Sci. 2014;6(1):16–21.CrossRefGoogle Scholar
  52. 52.
    Rai V. Strong association of C677T polymorphism of methylenetetrahydrofolate reductase gene with nosyndromic cleft lip/palate (nsCL/P). Indian J Clin Biochem. 2017;2:1–11.Google Scholar
  53. 53.
    Rai V, Kumar P. Methylenetetrahydrofolate reductase C677T polymorphism and risk of male infertility in Asian population. Indian J Clin Biochem. 2017;32(3):253–60.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Rai V. Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metab Brain Dis. 2016;31:727–35.CrossRefPubMedGoogle Scholar
  55. 55.
    Yadav U, Kumar P, Gupta S, Rai V. Role of MTHFR C677T gene polymorphism in the susceptibility of schizophrenia: an updated meta-analysis. Asian J Psychiatry. 2016;20:41–51.CrossRefGoogle Scholar
  56. 56.
    Rai V. Genetic polymorphisms of methylenetetrahydrofolate reductase (MTHFR) gene and susceptibility to depression in Asian population: a systematic meta-analysis. Cell Mol Biol. 2014;60(3):29–36.PubMedGoogle Scholar
  57. 57.
    Rai V. Methylenetetrahydrofolate reductase A1298C polymorphism and breast cancer risk: a meta-analysis of 33 studies. Ann Med Health Sci Res. 2014;4(6):841–51.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kumar P, Yadav U, Rai V. Methylenetetrahydrofolate reductase gene C677T polymorphism and breast cancer risk: evidence for genetic susceptibility. Meta Gene. 2015;6:72–84.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Rai V, Yadav U, Kumar P. Impact of catechol-O-methyltransferase Val 158Met (rs4680) polymorphism on breast cancer susceptibility in Asian population. Asian Pac J Cancer Prev. 2017;18(5):1243–50.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Yadav U, Kumar P, Rai V. NQO1 gene C609T polymorphism (dbSNP: rs1800566) and digestive tract cancer risk: a meta-analysis. Nutr Cancer. 2018.  https://doi.org/10.1080/01635581.2018.1460674.CrossRefPubMedGoogle Scholar
  61. 61.
    Rai V. Evaluation of the MTHFR C677T polymorphism as a risk factor for colorectal cancer in Asian populations. Asian Pac J Cancer Prev. 2016;16(18):8093–100.CrossRefGoogle Scholar
  62. 62.
    Liu JX, Luo RC, Li R, Li X, Guo YW, Ding DP, et al. Lack of associations of the COMT Val158Met polymorphism with risk of endometrial and ovarian cancer: a pooled analysis of case-control studies. Asian Pac J Cancer Prev. 2014;15(15):6181–6.CrossRefPubMedGoogle Scholar
  63. 63.
    Rai V. Methylenetetrahydrofolate reductase gene C677T polymorphism and its association with ovary cancer. J Health Med Inform. 2016;7:3–9.CrossRefGoogle Scholar
  64. 64.
    Xiao L, Tong M, Jin Y, Huang W, Li Z. The l58Val/Met polymorphism of catechol-O-methyl transferase gene and prostate cancer risk: a meta-analysis. Mol Biol Rep. 2013;40(2):1835–41.CrossRefPubMedGoogle Scholar
  65. 65.
    Yadav U, Kumar P, Rai V. Role of MTHFR A1298C gene polymorphism in the etiology of prostate cancer: a systematic review and updated meta-analysis. Egypt J Med Hum Genet. 2016;17:141–8.CrossRefGoogle Scholar

Copyright information

© Association of Clinical Biochemists of India 2018

Authors and Affiliations

  1. 1.Human Molecular Genetics Laboratory, Department of BiotechnologyVBS Purvanchal UniversityJaunpurIndia

Personalised recommendations