Advertisement

Analytical modelling of buckling in stringer sheet forming

  • Stefan Köhler
  • Henning Husmann
  • Daniel Corbean
  • Peter GrocheEmail author
Original Research
  • 22 Downloads

Abstract

Stringer sheet forming enables an efficient production of branched sheet metal structures. Compared to conventional sheet metal components, stringer sheets show a significant increase in stiffness and therefore offer new possibilities for lightweight design. A challenge in stringer sheet forming is the failure due to instability, which appears in the buckling of the stringer in concave curvatures. The prediction of this failure mode is so far only possible by complex numerical simulations. This work introduces an analytical model for the prediction of the buckling failure during forming of concave stringer sheet curvatures under different process boundary conditions. It is derived from Kirchhoff’s plate theory. A detailed sensitivity analysis of all influencing parameters is shown and extends the process understanding. The model is validated by means of a 4-point bending test and a stamping process. It can be used for a conservative estimation of the buckling failure limit in stringer sheet forming.

Keywords

Stringer sheet forming Buckling Analytical model 4-point bending Stamping 

Notes

Acknowledgements

The presented investigations were carried out within transfer project T7 of CRC 666 ‘Integral sheet metal design with higher order bifurcations’ and the project ‘Prestressed, hybrid stringer sheet structures’ (GR1818/57-1) funded by the German Research Foundation (DFG). The financial support of the German Research Foundation (DFG) is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bar-Cohen Y (2006) Biomimetics - using nature to inspire human innovation. Bioinspiration Biomim 1(1):1–12CrossRefGoogle Scholar
  2. 2.
    Zhao L, Ma J, Wang T, Xing D (2010) Lightweight design of mechanical structures based on structural bionic methodology. J Bionic Eng 7(4):S224–S231CrossRefGoogle Scholar
  3. 3.
    Köhler S, Rohnert C, Groche P (2018) Extension of geometric limits in drawing of stringer sheets. Procedia Manuf 15:693–700CrossRefGoogle Scholar
  4. 4.
    Groche P, Bruder E, Gramlich S (eds) (2017) Manufacturing Integrated Design - Sheet Metal Product and Process Innovation. Springer international Publishing AG, Cham (Switzerland)Google Scholar
  5. 5.
    Ertugrul M, Groche P (2009) Hydroforming of laser welded sheet stringers. Key Eng Mater 410-411:69–76CrossRefGoogle Scholar
  6. 6.
    Bäcker F (2015) Forming of multi-axially strongly curved steel sheets with load-adapted stiffening ribs. In German: Formgebung mehrachsig stark gekrümmter Stahlbleche mit lastangepassten Versteifungsrippen. Dissertation, Technische Universität Darmstadt (Institut für Produktionstechnik und Umformmaschinen),Google Scholar
  7. 7.
    Ertugrul M (2011) Active media-based deep drawing of ribbed sheets. In German: Wirkmedienbasiertes Tiefziehen von verrippten Blechen. Dissertation, Technische Universität Darmstadt (Institut für Produktionstechnik und Umformmaschinen),Google Scholar
  8. 8.
    Volk W, Groche P, Brosius A, Ghiotti A, Kinsey BL, Liewald M, Madej L, Min J, Yanagimoto J (2019) Models and modelling for process limits in metal forming. CIRP Ann Manuf Technol 62(2):775–798CrossRefGoogle Scholar
  9. 9.
    Ventsel E, Krauthammer T (2001) Thin plates and shells: theory, analysis, and applications. CRC pressGoogle Scholar
  10. 10.
    Senior BW (1956) Flange wrinkling in deep-drawing operations. J Mech Phys Solids 4(4):235–246.  https://doi.org/10.1016/0022-5096(56)90032-1 CrossRefGoogle Scholar
  11. 11.
    Cao J, Boyce MC (1997) Wrinkling behavior of rectangular plates under lateral constraint. Int J Solids Struct 34(2):153–176.  https://doi.org/10.1016/S0020-7683(96)00008-X CrossRefzbMATHGoogle Scholar
  12. 12.
    Wang X, Cao J (2000) An analytical prediction of flange wrinkling in sheet metal forming. J Manuf Process 2(2):100–107.  https://doi.org/10.1016/S1526-6125(00)70017-X CrossRefGoogle Scholar
  13. 13.
    Wang X, Cao J (2000) On the prediction of side-wall wrinkling in sheet metal forming processes. Int J Mech Sci 42(12):2369–2394.  https://doi.org/10.1016/S0020-7403(99)00078-8 CrossRefzbMATHGoogle Scholar
  14. 14.
    Bleich F (1952) Buckling strength of metal structures. McGraw-hill, New YorkGoogle Scholar
  15. 15.
    Groche P, Zettler A, Berner S, Schneider G (2011) Development and verification of a one-step-model for the design of flexible roll formed parts. Int J Mater Form 4(4):371–377CrossRefGoogle Scholar
  16. 16.
    Magrinho JPG, Silva CMA, Silva MB, Martins PAF (2018) Formability limits by wrinkling in sheet metal forming. Proc Inst Mech Eng Part L: J Mater Design Appl 232(8):681–692Google Scholar
  17. 17.
    Yan Y, Wang H-b, Wan M (2011) Prediction of stiffener buckling in press bend forming of integral panels. Transa Nonferr Metal Soc China 21(11):2459–2465.  https://doi.org/10.1016/S1003-6326(11)61037-6 CrossRefGoogle Scholar
  18. 18.
    Groche P, Köhler S, Kern S (2018) Stamping of stringer sheets. J Manuf Process 36:319–329.  https://doi.org/10.1016/j.jmapro.2018.10.025 CrossRefGoogle Scholar
  19. 19.
    Groche P, Bäcker F (2013) Springback in stringer sheet stretch forming. CIRP Ann Manuf Technol 62(1):275–278.  https://doi.org/10.1016/j.cirp.2013.03.117 CrossRefGoogle Scholar
  20. 20.
    Bäcker F, Groche P (2014) An algorithm for positioning functional and structural elements on semi-finished products for forming technology. In German: Ein Algorithmus zur Positionierung von Funktions- und Strukturelementen auf Halbzeugen für die Umformtechnik. Zwischenkolloquium SFB 666 Tagungsband 5Google Scholar
  21. 21.
    Bäcker F, Groche P, Abedini S (2012) Stringer Sheet Forming. Paper presented at the Proceedings of NAMRI/SME, Notre Dame (Indiana)Google Scholar
  22. 22.
    Bäcker F, Bratzke D, Groche P, Ulbrich S (2015) Time-varying process control for stringer sheet forming by a deterministic derivative-free optimization approach. Int J Adv Manuf Technol 80(5):817–840.  https://doi.org/10.1007/s00170-015-7048-8 CrossRefGoogle Scholar
  23. 23.
    Köhler S, Groche P, Baron A, Schuchard M (2016) Forming of stringer sheets with solid tools. Adv Mater Res 1140:3–10CrossRefGoogle Scholar
  24. 24.
    Yu Y, Haibo W, Min W (2011) Prediction of fracture in press bend forming of aluminum alloy high-stiffener integral panels. Comput Mater Sci 50(7):2232–2244.  https://doi.org/10.1016/j.commatsci.2011.02.034 CrossRefGoogle Scholar
  25. 25.
    C-g L, Li J, Dong Y-n, X-g Z, Yue T (2017) Fracture prediction in the forming of aircraft Al stiffeners using multi-point dies. Int J Adv Manuf Technol 90(9):3109–3118.  https://doi.org/10.1007/s00170-016-9634-9 CrossRefGoogle Scholar
  26. 26.
    Luo H, Li W, Li C, Wan M (2017) Investigation of creep-age forming of aluminum lithium alloy stiffened panel with complex structures and variable curvature. Int J Adv Manuf Technol 91(9):3265–3271.  https://doi.org/10.1007/s00170-017-0004-z CrossRefGoogle Scholar
  27. 27.
    Timoshenko SP, Gere JM (1961) Theory of elastic stability. Dover Publications, New YorkGoogle Scholar
  28. 28.
    Hill R (1958) A general theory of uniqueness and stability in elastic-plastic solids. J Mech Phys Solids 6(3):236–249.  https://doi.org/10.1016/0022-5096(58)90029-2 CrossRefzbMATHGoogle Scholar
  29. 29.
    Hutchinson J, Neale K (1985) Wrinkling of curved thin sheet metal. Plastic instability: 71–78Google Scholar
  30. 30.
    Virot E, Kreilos T, Schneider TM, Rubinstein SM (2017) Stability landscape of Shell buckling. Phys Rev Lett 119(22):224101.  https://doi.org/10.1103/PhysRevLett.119.224101 CrossRefGoogle Scholar
  31. 31.
    Zheng K, Lee J, Lin J, Dean TA (2017) A buckling model for flange wrinkling in hot deep drawing aluminium alloys with macro-textured tool surfaces. Int J Mach Tools Manuf 114(Supplement C):21–34.  https://doi.org/10.1016/j.ijmachtools.2016.12.008 CrossRefGoogle Scholar
  32. 32.
    Kirchoff G (1850) About the balance and movement of an elastic disc. In German: Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. Journal fur die reine und angewandte Mathematik (Crelle's Journal) 40:51–88Google Scholar
  33. 33.
    Liu N, Yang H, Li H, Yan S (2016) Plastic wrinkling prediction in thin-walled part forming process: a review. Chin J Aeronaut 29(1):1–14CrossRefGoogle Scholar
  34. 34.
    Saxena RK, Dixit PM (2010) Prediction of flange wrinkling in deep drawing process using bifurcation criterion. J Manuf Process 12(1):19–29.  https://doi.org/10.1016/j.jmapro.2010.01.003 CrossRefGoogle Scholar
  35. 35.
    Kim J, Yoon JW, Yang D (2003) Investigation into the wrinkling behaviour of thin sheets in the cylindrical cup deep drawing process using bifurcation theory. Int J Numer Methods Eng 56(12):1673–1705CrossRefGoogle Scholar
  36. 36.
    Kawka M, Olejnik L, Rosochowski A, Sunaga H, Makinouchi A (2001) Simulation of wrinkling in sheet metal forming. J Mater Process Technol 109(3):283–289CrossRefGoogle Scholar
  37. 37.
    Correia JDM, Ferron G (2004) Wrinkling of anisotropic metal sheets under deep-drawing: analytical and numerical study. J Mater Process Technol 155:1604–1610CrossRefGoogle Scholar
  38. 38.
    Narayanasamy R, Sowerby R (1995) Wrinkling behaviour of cold-rolled sheet metals when drawing through a tractrix die. J Mater Process Technol 49(1):199–211.  https://doi.org/10.1016/0924-0136(94)01331-T CrossRefGoogle Scholar
  39. 39.
    Banu M, Takamura M, Hama T, Naidim O, Teodosiu C, Makinouchi A (2006) Simulation of springback and wrinkling in stamping of a dual phase steel rail-shaped part. J Mater Process Technol 173(2):178–184.  https://doi.org/10.1016/j.jmatprotec.2005.11.023 CrossRefGoogle Scholar
  40. 40.
    Morovvati MR, Fatemi A, Sadighi M (2011) Experimental and finite element investigation on wrinkling of circular single layer and two-layer sheet metals in deep drawing process. Int J Adv Manuf Technol 54(1):113–121.  https://doi.org/10.1007/s00170-010-2931-9 CrossRefGoogle Scholar
  41. 41.
    Ludwik P (1909) Elements of technological mechanics. In German: Elemente der technologischen Mechanik. Springer-Verlag, BerlinCrossRefGoogle Scholar
  42. 42.
    Reihle M (1961) A simple method for recording the flow curves of steel at room temperature. In German: Ein einfaches Verfahren zur Aufnahme der Fließkurven von Stahl bei Raumtemperatur, in arch. Eisenhüttenwes. 32:331–336CrossRefGoogle Scholar
  43. 43.
    Dietrich J (2018) Forming practice: forming and cutting processes, tools, machines. In German: Praxis der Umformtechnik : Umform- und Zerteilverfahren, Werkzeuge, Maschinen. 12. Aufl. 2018 edn., WiesbadenGoogle Scholar
  44. 44.
    Doege E and Behrens BA (2010) Handbook forming. In German: Handbuch Umformtechnik. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  45. 45.
    DIfNe V (1998) EN ISO 14125 - Faserverstärkte Kunststoffe - Bestimmung der Biegeeigenschaften. Beuth Verlag GmbH, BerlinGoogle Scholar
  46. 46.
    PtU Equipment GOM Aramis. Institut für Produktionstechnik und Umformmaschinen (Technische Universität Darmstadt). https://www.ptu.tu-darmstadt.de/mn_wirueberuns/menu_austattung/menu_messtechnik/menu_gomaramisgomargus/ptu_gomaramisgomargus.en.jsp. Accessed 21.04.2019
  47. 47.
    Abaqus analysis user's manual (2010), vol IV. Dassault Systèmes (Abaqus), Providence, RI, USAGoogle Scholar
  48. 48.
    Kindmann R, Uphoff H (2014) FE buckling - Ideal buckling stresses of rectangular buckling fields. In German: FE-Beulen - Ideale Beulspannungen von rechteckigen Beulfeldern. Lehrstuhl für Stahl-, Holz-und Leichtbau; Fakultät für Bau-und Umweltingenieurwissenschaften; Ruhr-Universität Bochum. https://www.ruhr-uni-bochum.de/stahlbau/mam/software/5._fe-beulen.pdf. Accessed 14.05.2019 2019
  49. 49.
    DIfNe V (2017) DIN EN 1993-1-5 - design of steel structures - part 1–5; plated structural elements. Beuth Verlag GmbH, BerlinGoogle Scholar
  50. 50.
    Kang J-H, Leissa AW (2005) Exact solutions for the buckling of rectangular plates having linearly varying in-plane loading on two opposite simply supported edges. Int J Solids Struct 42(14):4220–4238CrossRefGoogle Scholar
  51. 51.
    Siebel E, Beisswänger H (1955) Deep drawing. In German: Tiefziehen. C. Hanser, MünchenGoogle Scholar
  52. 52.
    Darendeliler H, Akkök M, Yücesoy CA (2002) Effect of variable friction coefficient on sheet metal drawing. Tribol Int 35(2):97–104CrossRefGoogle Scholar
  53. 53.
    Lange K (1985) Handbook of metal forming. McGraw-Hill Book Company, New YorkGoogle Scholar
  54. 54.
    Swift HW (1952) Plastic instability under plane stress. J Mech Phys Solids 1(1):1–18MathSciNetCrossRefGoogle Scholar
  55. 55.
    Recklin V, Dietrich F, Groche P (2018) Influence of test stand and contact size sensitivity on the friction coefficient in sheet metal forming. Lubricants 6(2):41CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  • Stefan Köhler
    • 1
  • Henning Husmann
    • 1
  • Daniel Corbean
    • 1
  • Peter Groche
    • 1
    Email author
  1. 1.Institute for Production Engineering and Forming MachinesTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations