International Journal of Material Forming

, Volume 12, Issue 6, pp 1009–1022 | Cite as

Development of bio-based poly(butylene succinate) formulations for microcellular injection foaming

  • Nazim Ykhlef
  • Eric LafrancheEmail author
Original Research


Manufacturing lightweight plastic parts with high productivity while maintaining a high level of quality and excellent reproducibility of cellular structure reduces the amount of raw material needed while improving the carbon balance thanks to the bio-sourced origin of the polymer and the decrease of the transported mass. In this study, structural modifications of PBS were carried out in order to control the foaming mechanism in each phase of cell formation (gas dissolution, cell nucleation, cell growth and cell stabilization). Cell morphology has been improved by modifying the molecular architecture (ramified/branched, semi-reticulate structures), promoting nucleation (decrease of surface tension leading to a decrease in Gibbs’s energy barrier), or by adjusting the extensional viscosity or Newtonien viscosity of the material. The resulting formulation exhibits a decrease of more than 80% in cell size and a cell density multiplied by 450 regarding the linear structured injection moulding PBS reference FZ71 (Mitsubishi Chemical Corporation (MCC), Japan) noted here L-PBS.


Microcellular injection moulding Nitrogen foaming Biobased polyesters Morphology Cell structure Strain hardening 



This project (IFMAS P3A2) has been granted by the French State under the “Programme d’Investissements d’Avenir” Program (contract n°ANR-10-IEED-0004-01) and supported by the French Institute for Biobased Materials (IFMAS, France). The authors thank H. Amedro and S. Marcille (Roquette, France) for their support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Oettinger GH (2011) A strategy for competitive, sustainable and secure energy, Publications Office of the European Union, Luxembourg. DOI:
  2. 2.
    Landrock AH (1995) Handbook of plastic foams: types, properties, manufacture and applications, William AndrewGoogle Scholar
  3. 3.
    Kosior E, Bragança R, Fowler P (2006) Lightweight compostable packaging: literature review. Waste Resour. Action Progr. 26:1–48Google Scholar
  4. 4.
    Xu J (2001) Microcellular injection molding, John Wiley & SonsGoogle Scholar
  5. 5.
    Kumar V (1993) Microcellular polymers: Novel materials for the 21st century. J. Cell. Polym. 12:207–223Google Scholar
  6. 6.
    Xu X, Park CB, Lee JWS, Zhu X (2008) Advanced structural foam molding using a continuous polymer/Gas melt flow stream. J. Appl. Polym. Sci. 109:2855–2861. CrossRefGoogle Scholar
  7. 7.
    Costeux S (2015) Review CO2 - Blown nanocellular foams. J. Appl. Polym. Sci. 131:41293–41309. CrossRefGoogle Scholar
  8. 8.
    Guanghong H, Yue W (2012) Microcellular foam injection molding process, some critical issues for injection molding. In: Wang J (ed). InTech: 175–202Google Scholar
  9. 9.
    Zhu Z, Park CB (2005) Finite element analysis of cell coarsening in plastic foaming. J. Cell. Plast. 41:475–486. CrossRefGoogle Scholar
  10. 10.
    Zhu Z, Park CB, Zong JH (2008) Challenges to the formation of nano-cells in foaming processes. Int. Polym. Process. 23:270–276. CrossRefGoogle Scholar
  11. 11.
    Sato Y, Fujiwara K, Takikawa T, Sumarno TS, Masuoka H (1999) Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures. Fluid Phase Equilib. 162:261–276. CrossRefGoogle Scholar
  12. 12.
    Naguib HE, Park CB (2002) Strategies for achieving ultra low-density polyproylene foams. Polym. Eng. Sci. 42(7):1481–1492. CrossRefGoogle Scholar
  13. 13.
    Park CB, Baldwin DF, Suh NP (1995) Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polym. Eng. Sci. 35(5):432–440. CrossRefGoogle Scholar
  14. 14.
    Kumar V, Suh NP (1990) A process for making microcellular thermoplastic parts. Polym. Eng. Sci. 30(20):1323–1329. CrossRefGoogle Scholar
  15. 15.
    Ward CA, Levart E (1984) Conditions for stability of bubble nuclei in solid surfaces contacting a liquid-gas solution. J. Appl. Phys. 56:491–500. CrossRefGoogle Scholar
  16. 16.
    Chen LEE, Wang X, Straff R, Blizard K (2002) Shear stress nucleation in microcellular foaming process. Polym. Eng. Sci. 42(6):1151–1158. CrossRefGoogle Scholar
  17. 17.
    Taki K, Yanagimoto T, Funami E, Okamoto M, Ohshima M (2004) Visual observation of CO2 foaming of polypropylene-clay nanocomposites. Polym. Eng. Sci. 44(6):1004–1011. CrossRefGoogle Scholar
  18. 18.
    Dergarabedian P, Pasadena C (1953) The rate of growth of vapor bubbles in superheated water. J. Appl. Mech. 20(4):537–545 ISSN 0021-8936Google Scholar
  19. 19.
    Epstein PS, Plesset MS On the stability of gas bubbles in liquid-gas solutions. J. Chem. Phys. 18(11):1505–1509. CrossRefGoogle Scholar
  20. 20.
    Amon M, Denson CD (1984) A study of the dynamics of foam growth: Analysis of the growth of closely spaced spherical bubbles. Polym. Eng. Sci. 24(13):1026–1034. CrossRefGoogle Scholar
  21. 21.
    Taki K, Tabata K, Kihara S, Ohshima M (2006) Bubble coalescence in foaming process of polymers. Polym. Eng. Sci. 46(5):680–690. CrossRefGoogle Scholar
  22. 22.
    Rizvi SJA, Bhantnagar N (2009) Optimization of microcellular injection molding parameters. Int.Polym. Process. 24(5):399–405. CrossRefGoogle Scholar
  23. 23.
    Wu H, Wintermantel E (2010) The effects of mold design on the pore morphology of polymers produced with Mucell technology. J. Cell. Plast. 46(6):519–530. CrossRefGoogle Scholar
  24. 24.
    Li S, Zhao G, Wang G, Guan Y, Wang X (2014) Influence of relative low gas counter pressure to melt foaming behavior and surface quality of molded parts in microcellular injection molding process. J. Cell. Plast. 50(5):415–435. CrossRefGoogle Scholar
  25. 25.
    Chen SC, Lin YW, der Chien R, Li HM (2008) Variable mold temperature to improve surface quality of microcellular injection molded parts using induction heating technology. Adv. Polym. Technol. 27(4):224–232. CrossRefGoogle Scholar
  26. 26.
    Moon Y, Lee K, Cha SW (2009) Bubble growth in mold cavities during microcellular injection. J.Mech. Sci. Technol. 23(12):3349–3356. CrossRefGoogle Scholar
  27. 27.
    Nofar M, Park CB (2014) Poly(lactic acid) foaming. Prog. Polym. Sci. 39(10):1721–1741. CrossRefGoogle Scholar
  28. 28.
    Marrazzo C, Mario ED, Iannace S (2007) Foaming of synthetic and natural biodegradable polymers. J. Cell. Plast. 43(2):123–133. CrossRefGoogle Scholar
  29. 29.
    Pilla S, Kramschuster A, Yang L, Lee J, Gong S, Turng LS (2009) Microcellular injection-molding of polylactide with chain-extender. Mater. Sci. Eng. C. 29(4):1258–1265. CrossRefGoogle Scholar
  30. 30.
    Mihai M, Huneault M, Favis B (2010) Rheology and extrusion foaming of chain-branched poly(lactic acid). Polym. Eng. Sci. 50:629–642. CrossRefGoogle Scholar
  31. 31.
    Wang J, Zhu W, Zhang H, Park CB (2012) Continuous processing of low-density, microcellular poly(lactic acid) foams with controlled cell morphology and crystallinity. Chem. Eng. Sci. 75:390–399. CrossRefGoogle Scholar
  32. 32.
    Corre YM, Maazouz A, Duchet J, Reignier J (2011) Batch foaming of chain extended PLA with supercritical CO2: Influence of the rheological properties and the process parameters on the cellular structure. J. Supercrit. Fluids. 58(1):177–188. CrossRefGoogle Scholar
  33. 33.
    Pilla S, Kim SG, Auer GK, Gong S, Park CB (2009) Microcellular extrusion foaming of polylactide with chain-extender. Polym. Eng. Sci. 49:1653–1660. CrossRefGoogle Scholar
  34. 34.
    Zhao H, Cui Z, Wang X, Turng L, Peng X (2013) Processing and characterization of solid and microcellular poly (lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBVclay nanocomposites. Compos. Part B. 51:79–91. CrossRefGoogle Scholar
  35. 35.
    Zhao H, Yan X, Zhao G, Guo Z (2016) Microcellular injection molded polylactic acid/poly (ecaprolactone) blends with supercritical CO2: Correlation between rheological properties and their foaming behavior. Polym. Eng. Sci. 56:939–946. CrossRefGoogle Scholar
  36. 36.
    Di Y, Iannace S, Di Maio E, Nicolais L (2005) Reactively modified poly (lactic acid): Properties and foam processing. Macromol. Mater. Eng. 290(11):1083–1090. CrossRefGoogle Scholar
  37. 37.
    Nofar M, Tabatabaei A, Sojoudiasli H, Park CB, Carreau PJ, Heuzey MC, Kamal MR (2017) Mechanical and bead foaming behavior of PLA-PBAT and PLA-PBSA blends with different morphologies. Eur. Polym. J. 90:231–244. CrossRefGoogle Scholar
  38. 38.
    Ladin D, Park CB, Park SS, Naguib HE, Cha SW (2001) Study of shear and extensional viscosities of biodegradable PBS/CO2 solutions. J. Cell. Plast. 37(2):109–148. CrossRefGoogle Scholar
  39. 39.
    Lim Sk, Jang SG, Lee SI, Lee KH, Chin IJ (2008) Preparation and characterization of biodegradable poly(butylene succinate)(PBS) foams. Macromolecular Research. 16(3):218–223. CrossRefGoogle Scholar
  40. 40.
    Ykhlef N, Lafranche E (2017) 15th International Conference on Advances in Foam Materials & Technology, Poster Session, Bayreuth GermanyGoogle Scholar
  41. 41.
    Sarver JA, Sumey JL, Williams ML, Kiran E, Bishop JP, Dean DM (2018) Foaming of poly (ethylene-co-vinyl acetate) and poly (ethylene-co- vinyl acetate-co-carbon monoxide ) and their blends with carbon dioxide. J. Appl. Polym. Sci. 135:45841–45865. CrossRefGoogle Scholar
  42. 42.
    Jonathan C (1987) Nucleation of microcellular foam: Theory and practice. Polym. Eng. Sci. 27(7):500–503. MathSciNetCrossRefGoogle Scholar
  43. 43.
    Wan C, Sun G, Gao F, Liu T, Esseghir M, Zhao L, Yuan W (2017) Effect of phase compatibility on the foaming behavior of LDPE/HDPE and LDPE/PP blends with subcritical CO2 as the blowing agent. J. Supercrit. Fluids. 120:421–431. CrossRefGoogle Scholar
  44. 44.
    Bahreini E, Aghamiri SF, Wilhelm M, Abbasi M (2018) Influence of molecular structure on the foamability of polypropylene: Linear and extensional rheological fingerprint. J. Cell. Plast. 54(3):515–543. CrossRefGoogle Scholar
  45. 45.
    Realinho V, Antunes M, Martínez AB, Velasco I (2011) Influence of nanoclay concentration on the CO2 diffusion and physical properties of PMMA montmorillonite microcellular foams. Ind. Eng. Chem. Res. 50:13819–13824CrossRefGoogle Scholar
  46. 46.
    Kiran E (2016) Supercritical fluids and polymers – The year in review – 2014. J. Supercrit. Fluids. 110:126–153. CrossRefGoogle Scholar
  47. 47.
    Lee S-T, Park CB (2017) Polymeric foams: Innovations in processes, technologies, and products, Taylor & Francis GroupGoogle Scholar
  48. 48.
    Shah VM, Hardy BJ (1986) Solubility of carbon dioxide , methane, and propane in silicone polymers: Effect of polymer side chains. J. Polym. Sci. Part B Polym. Phys. 24(9):2033–2047. CrossRefGoogle Scholar
  49. 49.
    Herncic MK, Markocic E, Trupej N, Skerget M (2014) Investigation of thermodynamic properties of the binary system polyethylene glycol/CO2 using new methods. J. Supercrit. Fluids. 87:50–58. CrossRefGoogle Scholar
  50. 50.
    Markocic E, Knez Z (2014) Mathematical modelling of phase equilibria for supercritical CO2 and polyethylene glycol of various molecular weights. J. Supercrit. Fluids. 95(2014):635–640. CrossRefGoogle Scholar
  51. 51.
    Nalawade SP, Picchioni F, Marsman JH, Janssen LPBM (2006) The FT-IR studies of the interactions of CO2 and polymers having different chain groups. J. Supercrit. Fluids. 36(3):236–244. CrossRefGoogle Scholar
  52. 52.
    Forest C, Chaumont P, Cassagnau P, Swoboda B, Sonntag P (2015) Polymer nano-foams for insulating applications prepared from CO2 foaming. Prog. Polym. Sci. 41:122–145CrossRefGoogle Scholar
  53. 53.
    Guo Q, Park CB, Xu X, Wang J (2007) Relationship of fractional free volumes derived from the equations of state (EOS) and the Doolittle equation. J. Cell. Plast. 43(1):69–82. CrossRefGoogle Scholar
  54. 54.
    Mahmood SH, Ameli A, Hossieny N, Park CB (2014) The interfacial tension of molten polylactide in supercritical carbon dioxide. J. Chem. Thermodyn. 75:69–76. CrossRefGoogle Scholar
  55. 55.
    Lee JK, Yao SX, Li G, Jun MBG, Lee PC (2017) Measurement methods for solubility and diffusivity of gases and supercritical fluids in polymers and its applications. Polym. Rev. 3724:1–53. CrossRefGoogle Scholar
  56. 56.
    Li G, Wang J, Simha R, Park CB (2007) Measurement of gas solubility in linear and branched PP melts. J. Polym. Sci. Part B Polym. Phys. 45(17):2497–2508. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Polymers and Composites Technology & Mechanical Engineering Department (TPCIM)IMT Lille Douai, Institut Mines TélécomDouaiFrance
  2. 2.Université de LilleLilleFrance

Personalised recommendations