Picture-frame testing of woven prepreg fabric: An investigation of sample geometry and shear angle acquisition

  • Christian KroghEmail author
  • Kari D. White
  • Alessandro Sabato
  • James A. Sherwood
Original Research


This paper examines different concepts in relation to the picture-frame test for shear characterization of a woven prepreg fabric. The influence of the sample arms is investigated by means of cut slits as well as removed transverse tows. Shear angles are obtained using Digital Image Correlation (DIC) and also from images taken during the test which are processed for fiber angles directly from the weave texture. The image processing relies on the Hough transform in MATLAB. The concept of constant shear strain rate is discussed and implemented in the test software by a multi-linear crosshead velocity profile. Finally, bias-extension data are obtained and used for comparison. It is found that the sample arm modifications have a pronounced effect on the measured shear load whereas the uniformness of the shear strain field in the samples is not improved considerably.


Woven carbon fiber prepreg Shear characterization Picture frame testing Image analysis 



The authors wish to thank the Innovation Fund Denmark (grant no. 5163-00003B) for providing support for the research presented in the paper. The authors also thank Terma Aerostructures A/S for providing the material.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Alsayednoor J, Harrison P, Yu W R (2017) Influence of specimen pre-shear and wrinkling on the accuracy of uniaxial bias extension test results. Compos A: Appl Sci Manuf 101:81–97. CrossRefGoogle Scholar
  2. 2.
    Arumugam V, Mishra R, Militky J, Tunak M (2016) In-plane shear behavior of 3D spacer knitted fabrics. J Ind Text 46(3):868–886. CrossRefGoogle Scholar
  3. 3.
    Cao J, Akkerman R, Boisse P, Chen J, Cheng H S, de Graaf E F, Gorczyca J L, Harrison P, Hivet G, Launay J, Lee W, Liu L, Lomov S V, Long A, de Luycker E, Morestin F, Padvoiskis J, Peng X, Sherwood J A, Stoilova T, Tao X, Verpoest I, Willems A, Wiggers J, Yu T, Zhu B (2008) Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results. Compos A: Appl Sci Manuf 39(6):1037–1053. CrossRefGoogle Scholar
  4. 4.
    Dangora L M, Hansen C J, Mitchell C J, Sherwood J A, Parker J C (2015) Challenges associated with shear characterization of a cross-ply thermoplastic lamina using picture frame tests. Compos A: Appl Sci Manuf 78:181–190. CrossRefGoogle Scholar
  5. 5.
    Dassault Systèmes Simulia Corporation (2014) Abaqus 6.14 Documentation: 23.4.1 Fabric material behaviorGoogle Scholar
  6. 6.
    Ferretti M, Madeo A, Dell’Isola F, Boisse P (2014) Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Zeitschrift fur Angewandte Mathematik und Physik 65 (3):587–612. MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Harrison P, Clifford M, Long A (2002) Constitutive modelling of impregnated continuous fibre reinforced composites micromechanical approach. Plast Rubber Compos 31(2):1–12. CrossRefGoogle Scholar
  8. 8.
    Harrison P, Clifford M, Long A (2004) Shear characterisation of viscous woven textile composites: A comparison between picture frame and bias extension experiments. Compos Sci Technol 64(10-11):1453–1465. CrossRefGoogle Scholar
  9. 9.
    Harrison P, Wiggers J, Long A (2008) Normalization of shear test data for rate-independent compressible fabrics. J Compos Mater 42(22):2315–2344. CrossRefGoogle Scholar
  10. 10.
    Harrison P, Alvarez M F, Anderson D (2018) Towards comprehensive characterisation and modelling of the forming and wrinkling mechanics of engineering fabrics. Int J Solids Struct 154:2–18. CrossRefGoogle Scholar
  11. 11.
    Jauffrės D, Sherwood J A, Morris C D, Chen J (2010) Discrete mesoscopic modeling for the simulation of woven-fabric reinforcement forming. Int J Mater Form 3(SUPPL. 2):1205–1216. CrossRefGoogle Scholar
  12. 12.
    Krieger H, Kaufmann D, Gries T (2015) Kinematic drape algorithm and experimental approach for the design of tailored non-crimp fabrics. Key Eng Mater 651-653:393–398. CrossRefGoogle Scholar
  13. 13.
    Krogh C, Glud J A, Jakobsen J (2019) Modeling the robotic manipulation of woven carbon fiber prepreg plies onto double curved molds: A path-dependent problem. J Compos Mater 53(15):2149–2164. CrossRefGoogle Scholar
  14. 14.
    Launay J, Hivet G, Duong A V, Boisse P (2008) Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Compos Sci Technol 68(2):506–515. CrossRefGoogle Scholar
  15. 15.
    Lebrun G, Bureau M N, Denault J (2003) Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics. Compos Struct 61(4):341–352. CrossRefGoogle Scholar
  16. 16.
    Lomov S V, Boisse P, Deluycker E, Morestin F, Vanclooster K, Vandepitte D, Verpoest I, Willems A (2008) Full-field strain measurements in textile deformability studies. Compos A: Appl Sci Manuf 39 (8):1232–1244. CrossRefGoogle Scholar
  17. 17.
    Lussier D (2000) Shear characterization of textile composite formability Master’s thesis. University of Massachusetts, LowellGoogle Scholar
  18. 18.
    Marques O (2011) Practical image and video processing using MATLAB. Wiley, New York. CrossRefGoogle Scholar
  19. 19.
    Milani A S, Nemes J A, Lebrun G, Bureau M N (2010) A comparative analysis of a modified picture frame test for characterization of woven fabrics. Polym Compos 31(4):561–568. Google Scholar
  20. 20.
    Mohan R P, Alshahrani H, Hojjati M (2016) Investigation of intra-ply shear behavior of out-of-autoclave carbon/epoxy prepreg. J Compos Mater 50(30):4251–4268. CrossRefGoogle Scholar
  21. 21.
    Nguyen M, Herszberg I, Paton R (1999) The shear properties of woven carbon fabric. Compos Struct 47(1-4):767–779. CrossRefGoogle Scholar
  22. 22.
    Nosrat-Nezami F, Gereke T, Eberdt C, Cherif C (2014) Characterisation of the shear-tension coupling of carbon-fibre fabric under controlled membrane tensions for precise simulative predictions of industrial preforming processes. Compos A: Appl Sci Manuf 67:131–139. CrossRefGoogle Scholar
  23. 23.
    Olson B G, Krieger H, Sherwood J A, Willis D J, Bergeron K (2017) Investigation of tensile properties of braided parachute suspension line. In: 24th AIAA aerodynamic decelerator systems technology conference american institute of aeronautics and astronautics, Denver, Colorado.
  24. 24.
    Peng X, Cao J (2005) A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics. Compos A: Appl Sci Manuf 36(6):859–874. CrossRefGoogle Scholar
  25. 25.
    Peng X, Cao J, Chen J, Xue P, Lussier D S, Liu L (2004) Experimental and numerical analysis on normalization of picture frame tests for composite materials. Compos Sci Technol 64(1):11–21. CrossRefGoogle Scholar
  26. 26.
    Zhu B, Yu T X, Tao X M (2007) An experimental study of in-plane large shear deformation of woven fabric composite. Compos Sci Technol 67(2):252–261. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials and ProductionAalborg UniversityAalborgDenmark
  2. 2.Department of Mechanical EngineeringUniversity of Massachusetts LowellLowellUSA

Personalised recommendations