Advertisement

On the numerical prediction of the torque-to-turn-value of a blind rivet nut

  • A. Van de VeldeEmail author
  • S. Coppieters
  • J. Maeyens
  • M. Wevers
  • D. Debruyne
Original Research
  • 25 Downloads

Abstract

In the present paper, finite element simulations are used to gain a better understanding of the setting process of a blind rivet nut. A blind rivet nut is a mechanical fastener capable of clinching materials whilst providing a threaded solution without the need for thread forming. The technique relies on plastic deformation introduced by axial compression of the rivet nut in such a way that a counter head is formed on the opposite side of the work piece. For certain applications, stresses in the plate material induced by the setting process are detrimental for the fastener’s integrity. Hence an improved design of the fastener is desired. To embark on such a redesign, an appropriate numerical model to reveal the influence of several parameters is indispensable. In this work, a strategy is presented to simulate the setting process involving large plastic strains and contact pressures. An FE based inverse method was used to identify the local plastic material properties of the blind rivet nut. The forming simulation was validated in terms of predicted shape of the rivet nut and the evolution of the setting force. A quasi-static FE model using the shape and solution variables of the deformed rivet nut was used to reproduce the torque-to-turn resistance as a function of the setting force. The strategy was successfully applied on two blind rivet nuts, different in geometry and base material. Finally, three industrial case studies confirmed the viability of the model.

Keywords

Blind rivet nut Torque-to-turn Rivet joint Material identification Stereo-DIC FE modelling 

Notes

Acknowledgements

The presented results are part of the TETRA project “A Total Approach in Hybrid Joining” funded by the Flemish government agency “Flanders Innovation & Entrepreneurship” (VLAIO).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Messler R (2004) Joining of Materials and Structures. Elsevier, New YorkCrossRefGoogle Scholar
  2. 2.
    Aurich JC, Kirsch B, Müller C, Heberger L (2014) Procedia CIRPGoogle Scholar
  3. 3.
    Thoppul SD, Finegan J, Gibson RF (2004) Composites Science and TechnologyGoogle Scholar
  4. 4.
    Manes A, Giglio F, Viganò F (2011) International Journal of Mechanical SciencesGoogle Scholar
  5. 5.
    Van de Velde A, Coppieters S, Denys K, Maeyens J, Debruyne D (2017) Proceedings of the 20th international ESAFORM conference on material formingGoogle Scholar
  6. 6.
    Cheraghi SH (2007) International journal of advanced manufacturing technologyGoogle Scholar
  7. 7.
    Glackin JJ, Gowen EF, Keeney CJ (1968) Development of fasteners technology for beryllium point drive bolds and blind fasteners. Tech. rep., SPS LaboratoriesGoogle Scholar
  8. 8.
    Wanner MC, Henkel KM, Herzogt P, Fuchs N, Glienke R (2009) Einsatz von blindgenieteten funktionselementen in ausgewählten bauteilwerkstoffen. Tech. rep., Universität Rostock, Fakultät für Maschinenbau und SchiffstechnikGoogle Scholar
  9. 9.
    Klasztorny M, Nycs D (2014) Shell Structures: Theory and Applications, vol 3. CRC Press, Chap. Modelling and numerical study of blind rivet nut / bolt joints of composite shell segmentsGoogle Scholar
  10. 10.
    Yoo SY, Kim CH, Kweon JH, Choi JH (2016) Composite structuresGoogle Scholar
  11. 11.
    MatchID (2016) MatchID software (http://www.matchidmbc.com)
  12. 12.
    Simulia Abaqus version 6.13Google Scholar
  13. 13.
    Design G (2017) CES EduPackGoogle Scholar
  14. 14.
    Simulia Abaqus anlysis user’s guide 6.11Google Scholar
  15. 15.
    Denys K, Coppierters S, Cooreman S, Debruyne D (2016) Mechanics of MaterialsGoogle Scholar
  16. 16.
    Coppieters S, Lava P, Sol H, Van Bael A, Van Houtte P, Debruyne D (2010) Determination of the flow stress and contact friction of sheet metal in a multi-layered upsetting test. J Mater Process Technol 210:1290–1296CrossRefGoogle Scholar
  17. 17.
    Coppieters S, Kuwabara T (2014) Identification of Post-Necking Hardening Phenomena in Ductile Sheet Metal. Exp Mech 54:1355 753CrossRefGoogle Scholar
  18. 18.
    (1994) Military Standardization Handbook. Defense Automated Printing ServicesGoogle Scholar
  19. 19.
    Reithmaier LW, Leavell S, Bungay S (1991) Standard aircraft handbook. Blue Ridge SummitGoogle Scholar
  20. 20.
    Maeyens J, Reul A, Van Leugenhaeghe S (2018) Blindklinkbevestiger en werkijze voor de productie daarvan Belgium Patent F16B 37/06 - BE1025150Google Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringKU LeuvenGhentBelgium
  2. 2.Dejond NVWilrijkBelgium
  3. 3.Department of Materials EngineeringKU LeuvenLeuvenBelgium

Personalised recommendations