3D FEM-DEM coupling analysis for granular-media-based thin-wall elbow tube push-bending process

  • Hai LiuEmail author
  • Shi-Hong Zhang
  • Hong-Wu Song
  • Gao-Lian Shi
  • Ming Cheng
Original Research


The granular-media-based thin-wall elbow push-bending process involves filling a tube with granular media and pushing the tube into a die to bend a tubular blank into an elbow shape. By means of the mechanical characteristics of granular filler, an elbow tube with t/D < 0.01 (the ratio of wall thickness to outer diameter) and R/D < 1.5 (the ratio of bending radius to outer diameter) can be formed. To investigate the interaction between thin-wall elbow and granular filler, A 3D FEM-DEM coupling numerical model is developed, which takes into account both the deformation behavior of tubular blank (continuum, finite element method FEM) and mechanical characteristics of granular filler (discrete media, discrete element method DEM). By means of the coupling model, the key forming parameters of an elbow tube such as forming force, wall thickness distribution, wrinkling are simulated and compared to experimental results.


Elbow tube Granular-media-based Push bending FEM − DEM coupling 



The present work is funded by the National Natural Science Foundation of China (contract no. 51875547), project of Suzhou Key Laboratory Foundation (SZS201815).

Compliance with ethical standards

The authors declare that they have no conflict of interest.


  1. 1.
    Yang H, Li H, Zhang ZY et al (2012) Advances and trends on tube bending forming technologies. Chinese. J Aeronaut 25:1–12CrossRefGoogle Scholar
  2. 2.
    Hashmi MSJ (2006) Aspects of tube and pipe manufacturing processes: meter to nanometer diameter. J. Mater. Proc. Technol. 179:5–10CrossRefGoogle Scholar
  3. 3.
    Yang H, Li H, Zhang ZY et al (2012) Advances and trends on tube bending forming technologies. J Plast Eng 8:83–85Google Scholar
  4. 4.
    Karbasian H, Tekkaya AE (2010) A review on hot stamping. J Mater Process Technol 210(15):2103–2118CrossRefGoogle Scholar
  5. 5.
    Zhang SH, Shen YF, Qiu HJ (2013) The technology and welding joint properties of hybrid laser-tig welding on thick plate. Opt Laser Technol 48:381–388CrossRefGoogle Scholar
  6. 6.
    Liu H, Zhang SH, Cheng M et al (2013) DEM simulation of bead packs as fillers in thin-wall tube push bending process. AIP Proceedings 1532:708–713Google Scholar
  7. 7.
    Teng BG, Hu L, Liu G, Yuan SJ (2012) Wrinkling behavior of hydro bending of carbon steel Al alloy bilayered tubes. Trans Nonferrous Met Soc China 22:560–565CrossRefGoogle Scholar
  8. 8.
    Oh IY, Han SW, Woo YY et al (2018) Tubular blank design to fabricate an elbow tube by a push-bending process. J Mater Proc Technol 260:112–122CrossRefGoogle Scholar
  9. 9.
    Armstrong, D.E., Dunn, T.J.J., Stulen, W.H., Roeser, G.P., 1961. Cold tube bending and sizing, US2971556A (US Patent)Google Scholar
  10. 10.
    Zeng Y, Li Z (2002) Experimental research on the tube push-bending process. J. Mater. Proc. Technol. 122:237–240CrossRefGoogle Scholar
  11. 11.
    Baudin S, Ray P, Mac Donald BJ, Hashmi MSJ (2004) Development of a novel method of tube bending using finite element simulation. J Mater Process Technol 153:128–133CrossRefGoogle Scholar
  12. 12.
    Kahnamouei JT, Behjat B (2010) Modeling and experimental validation of the effect of sand filling on avoiding wrinkling phenomenon in thin-walled tube bending process. In ASME 2010 10th biennial conference on engineering systems design and analysis. Am Soc Mech Eng:799–803Google Scholar
  13. 13.
    Du B, Zhao CC, Dong GJ et al (2017) FEM-DEM coupling analysis for solid granule medium forming new technology. J Mater Process Technol 249:108–117CrossRefGoogle Scholar
  14. 14.
    Chen H, Güner A, Khalifa NB, Tekkaya AE (2016) Granular media-based tube press hardening. J Mater Process Technol 228:145–159CrossRefGoogle Scholar
  15. 15.
    Chen H, Hess S, Haeberle J, Pitikaris S, Born P, Güner A, Sperl M, Tekkaya AE (2016) Enhanced granular medium-based tube and hollow profile press hardening. CIRP Ann-Manuf Technol 65(1):273–276CrossRefGoogle Scholar
  16. 16.
    Dong GJ, Zhao CC, Peng YX, Li Y (2015) Hot granules medium pressure forming process of AA7075 conical parts. Chin J Mech Eng 28:580–591CrossRefGoogle Scholar
  17. 17.
    Dong GJ, Bi J, Du B, Zhao CC (2017) Research on AA6061 tubular components prepared by combined technology of heat treatment and internal high pressure forming. J Mater Process Technol 242:126–138CrossRefGoogle Scholar
  18. 18.
    Brauer K, Pfitzner M, Krimer DO, Mayer M, Jiang YM, Liu M (2006) Granular elasticity: stress distributions in silos and under point loads. Phys Rev E 74:061311CrossRefGoogle Scholar
  19. 19.
    Kiwing T, Lai PY, Pak HK (2001) Jamming of granular flow in a two-dimensional hopper. Phys Rev Lett 86:71–74CrossRefGoogle Scholar
  20. 20.
    Hirshfeld D, Rapaport DC (2001) Granular flow from a silo: discrete-particle simulations in three dimensions. The European Physical Journal E 4:193–199CrossRefGoogle Scholar
  21. 21.
    Liu H, Zhang SH, Cheng M et al (2015) A minimum principle for contact forces in random packings of elastic frictionless particles. Granul Matter 17:475–482CrossRefGoogle Scholar
  22. 22.
    Cundal PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65CrossRefGoogle Scholar
  23. 23.
    Nakashima H, Oida A (2004) Algorithm and implementation of soil-tire contact analysis code based on dynamic FE-DE method. J Terrramech 41:127–137CrossRefGoogle Scholar
  24. 24.
    Michael M, Vogel F, Peters B (2015) DEM–FEM coupling simulations of the interactions between a tire tread and granular terrain. Comput Methods Appl Mech Eng 289:227–248MathSciNetCrossRefGoogle Scholar
  25. 25.
    Taforel P, Renouf M, Dubois F, Voivret JC (2015) Finite element-discrete element coupling strategies for the modelling of ballast-soil interaction. International Journal of Railway Technology 4:73–95CrossRefGoogle Scholar
  26. 26.
    Oñate E, Rojek J (2004) Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Comput Methods Appl Mech Eng 193:3087–3128CrossRefzbMATHGoogle Scholar
  27. 27.
    Oñate E, Labra C, Zárate F, Rojek J (2012) Modelling and simulation of the effect of blast loading on structures using an adaptive blending of discrete and finite element methods. Risk Analysis, Dam Safety, Dam Security and Critical Infrastructure Management, pp 365–371Google Scholar
  28. 28.
    Frangin E, Marin P, Daudeville L (2006) Coupled finite/discrete element method to analyze localized impact on reinforced concrete structure. Computational modelling of concrete structures. In: Mechke G, de Borst R, Mang H, Bićanić N (eds) Computational modelling of concrete structures: proceedings of the euro-C 2006 conference. Mayrhofen, Austria, pp 27–30Google Scholar
  29. 29.
    Haddad H, Guessasma M, Fortin J (2016) A DEM–FEM coupling based approach simulating thermomechanical behaviour of frictional bodies with interface layer. Int J Solids Struct 81:203–218CrossRefGoogle Scholar
  30. 30.
    Zheng Z, Zang M, Chen S, Zhao C (2017) An improved 3D DEM-FEM contact detection algorithm for the interaction simulations between particles and structures. Powder Technol 305:308–322CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Precision Manufacturing EngineeringSuzhou Vocational Institute of Industrial TechnologySuzhouPeople’s Republic of China
  2. 2.Institute of Metal ResearchChinese Academy of SciencesShenyangPeople’s Republic of China

Personalised recommendations