Advertisement

Specific features of flax fibres used to manufacture composite materials

  • Christophe Baley
  • Moussa Gomina
  • Joel Breard
  • Alain Bourmaud
  • Sylvain Drapier
  • Manuela Ferreira
  • Antoine Le Duigou
  • Pierre Jacques Liotier
  • Pierre Ouagne
  • Damien Soulat
  • Peter DaviesEmail author
Review
  • 85 Downloads

Abstract

The use of composite materials reinforced by flax fibres has been increasing steadily over the last 20 years. These fibres show attractive mechanical properties but also some particularities (naturally limited length, presence of a lumen, fibres grouped in bundles in the plant, complex surface properties and composition). An analysis of the available literature indicates that the quality of the composite materials studied is not always optimal (high porosity, incomplete impregnation, heterogeneous microstructure, variable fibre orientation). This paper reviews published data on the specific nature of flax fibres with respect to manufacturing of biocomposites (defined here as polymers reinforced by natural fibres). All the important steps in the process which influence final properties are analyzed, including the plant development, retting, fibre extraction, fibre treatment, preform preparation, available manufacturing processes, the impregnation step, fibre cell wall changes during processing and fibre/matrix adhesion.

Keywords

Composite materials biocomposite flax fibre polymer processing 

Notes

Acknowledgements

The authors are grateful to the CNRS for supporting the Research Group GDR 3671 (Mise en œuvre des matériaux composites et propriétés induites).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Naslain R. Introduction aux Matériaux Composites, n°2,. Edition du CNRS; 1985.Google Scholar
  2. 2.
    Garvie RC, Hannink RH, Pascoe RT (1975) Ceramic steel? Nature 258:703–704CrossRefGoogle Scholar
  3. 3.
    Porter DL, Heuer AH (1977) Mechanisms of Toughening Partially Stabilized Zirconia (PSZ). J Am Ceram Soc 60:183–184CrossRefGoogle Scholar
  4. 4.
    Claussen N (1976) Fracture Toughness of Al2O3 with an Unstabilized ZrO2Dispersed Phase. J Am Ceram Soc 59:49–51CrossRefGoogle Scholar
  5. 5.
    Ruf H, Evans AG (n.d.) Toughening by Monoclinic Zirconia. J Am Ceram Soc 66:328–332.  https://doi.org/10.1111/j.1151-2916.1983.tb10042.x
  6. 6.
    Faber KT, Evans GA (1983) Intergranular Crack-Deflection Toughening in Silicon Carbide. J Am Ceram Soc 66:C-94–C-95.  https://doi.org/10.1111/j.1151-2916.1983.tb10084.x CrossRefGoogle Scholar
  7. 7.
    Swain MV, Hannink RHJ, Garvie RC (1983) Influence of precipitate size and temperature on the fracture toughness of calcia- and magnesia-partially stabilized zirconia. Fract Mech Ceram 6:339–354Google Scholar
  8. 8.
    Evans AG, Cannon RM (1986) Toughening of brittle solids by martensitic transformations. Acta Metall 34:761CrossRefGoogle Scholar
  9. 9.
    Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297zbMATHGoogle Scholar
  10. 10.
    Jayatilaka ADS (1979) Fracture of Engineering Brittle Materials. Applied Science Publ, Ltd, LondonGoogle Scholar
  11. 11.
    Green DJ, Lange FF, James MR (n.d.) Factors Influencing Residual Surface Stresses due to a Stress-Induced Phase Bansformation. J Am Ceram Soc 66:623–629.  https://doi.org/10.1111/j.1151-2916.1983.tb10610.x
  12. 12.
    Becher PF, Ogle JC, Tiegs TN, Warwick WH (1986) Toughening of ceramics by whisker reinforcement. Fract Mech Ceram 7:61–74CrossRefGoogle Scholar
  13. 13.
    Claussen N (1986) Strengthening Strategies for ZrO2-Toughened Ceramics at High Temperatures. Mater Sci Eng 71:23–38CrossRefGoogle Scholar
  14. 14.
    Homeny J, Vaughn WL, Ferber MK (1987) Processing and Mechanical Properties of SiC-Whisker-Al2O3-Matrix Composites. Am Ceram Soc Bull 66:333–338Google Scholar
  15. 15.
    Faber KT, Evans AG (1983) Crack deflection processes—I. Theory Acta Metall 31:565–576.  https://doi.org/10.1016/0001-6160(83)90046-9 CrossRefGoogle Scholar
  16. 16.
    Faber KT, Evans AG (1983) Crack deflection processes—II. Experiment Acta Metall 31:577–584.  https://doi.org/10.1016/0001-6160(83)90047-0 CrossRefGoogle Scholar
  17. 17.
    Aveston J, Cooper MG, Kelly A. The properties of fibers composites. Conf. Proc. Natl. Phys. Lab. Teddington, UK, London , IPC Science and Technology Press Ltd.; 1971, p. 15–24.Google Scholar
  18. 18.
    Bourmaud A, Beaugrand J, Shah DU, Placet V, Baley C (2018) Towards the design of high-performance plant fibre composites. Prog Mater Sci 97:347–408.  https://doi.org/10.1016/j.pmatsci.2018.05.005 CrossRefGoogle Scholar
  19. 19.
    Eder M, Burgert I. Natural Fibres – Function in Nature Chapitre 2.2. Industrial. Wiley; 2010.Google Scholar
  20. 20.
    van Dam JEG, Gorshkova TA (2003) Fiber Formation. Encycl Appl Plant Sci, Elsevier:87–96.  https://doi.org/10.1016/B0-12-227050-9/00046-6
  21. 21.
    Baley C, Goudenhooft C, Gibaud M, Bourmaud A (2018) Flax stems: from a specific architecture to an instructive model for bioinspired composite structures. Bioinspiration and Biomimetics 13:12.  https://doi.org/10.1088/1748-3190/aaa6b7 CrossRefGoogle Scholar
  22. 22.
    Baley C, Bourmaud A (2014) Average tensile properties of French elementary flax fibers. Mater Lett 122:159–161.  https://doi.org/10.1016/j.matlet.2014.02.030 CrossRefGoogle Scholar
  23. 23.
    Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos - Part A Appl Sci Manuf 33:939–948.  https://doi.org/10.1016/S1359-835X(02)00040-4 CrossRefGoogle Scholar
  24. 24.
    Lefeuvre A, Bourmaud A, Morvan C, Baley C (2014) Elementary flax fibre tensile properties: Correlation between stress–strain behaviour and fibre composition. Ind Crop Prod 52:762–769.  https://doi.org/10.1016/j.indcrop.2013.11.043 CrossRefGoogle Scholar
  25. 25.
    Bourmaud A, Morvan C, Bouali A, Placet V, Perré P, Baley C (2013) Relationships between micro-fibrillar angle, mechanical properties and biochemical composition of flax fibers. Ind Crop Prod 44:343–351.  https://doi.org/10.1016/j.indcrop.2012.11.031 CrossRefGoogle Scholar
  26. 26.
    Köhler L, Spatz H-C (2002) Micromechanics of plant tissues beyond the linear-elastic range. Planta 215:33–40.  https://doi.org/10.1007/s00425-001-0718-9 CrossRefGoogle Scholar
  27. 27.
    Spatz H, Kohler L, Niklas KJ (1999) Mechanical behaviour of plant tissues: composite materials or structures? J Exp Biol 202:3269–3272Google Scholar
  28. 28.
    Keryvin V, Lan M, Bourmaud A, Parenteau T, Charleux L, Baley C (2015) Analysis of flax fibres viscoelastic behaviour at micro and nano scales. Compos Part A Appl Sci Manuf 68.  https://doi.org/10.1016/j.compositesa.2014.10.006
  29. 29.
    Lefeuvre A, Bourmaud A, Lebrun L, Morvan C, Baley C (2013) A study of the yearly reproducibility of flax fiber tensile properties. Ind Crop Prod 50:400–407.  https://doi.org/10.1016/j.indcrop.2013.07.035 CrossRefGoogle Scholar
  30. 30.
    Baley C, Perrot Y, Busnel F, Guezenoc H, Davies P (2006) Transverse tensile behaviour of unidirectional plies reinforced with flax fibres. Mater Lett 60:2984–2987.  https://doi.org/10.1016/j.matlet.2006.02.028 CrossRefGoogle Scholar
  31. 31.
    Baley C, Kervoëlen A, Le Duigou A, Goudenhooft C, Bourmaud A (2016) Is the low shear modulus of flax fibres an advantage for polymer reinforcement? Mater Lett 185:534–536.  https://doi.org/10.1016/j.matlet.2016.09.067 CrossRefGoogle Scholar
  32. 32.
    Scida D, Bourmaud B, Baley C, Bourmaud A, Baley C (2017) Influence of the scattering of flax fibres properties for the calculation of flax/epoxy woven ply stiffness. Mater Des 122:136–145.  https://doi.org/10.1016/j.matdes.2017.02.094 CrossRefGoogle Scholar
  33. 33.
    Le Gall M, Davies P, Martin N, Baley C (2018) Recommended flax fibre density values for composite property predictions. Ind Crop Prod 114:52–58.  https://doi.org/10.1016/j.indcrop.2018.01.065 CrossRefGoogle Scholar
  34. 34.
    Amiri A, Triplett Z, Moreira A, Brezinka N, Alcock M, Ulven CA (2017) Standard density measurement method development for flax fiber. Ind Crop Prod 96:196–202.  https://doi.org/10.1016/j.indcrop.2016.11.060 CrossRefGoogle Scholar
  35. 35.
    Piggott MR (1996) Mesostructures and their mechanics in fibre composites. Adv Compos Mater 6:75–81CrossRefGoogle Scholar
  36. 36.
    Coroller G, Lefeuvre A, Le Duigou A, Bourmaud A, Ausias G, Gaudry T et al (2013) Effect of flax fibres individualisation on tensile failure of flax/epoxy unidirectional composite. Compos Part A Appl Sci Manuf 51:62–70.  https://doi.org/10.1016/j.compositesa.2013.03.018 CrossRefGoogle Scholar
  37. 37.
    Bensadoun F, Verpoest I, Baets J, Müssig J, Graupner N, Davies P et al (2017) Impregnated Fibre Bundle Test for Natural Fibres used in Composites. J Reinf Plast Compos 36:942–957.  https://doi.org/10.1177/0731684417695461 CrossRefGoogle Scholar
  38. 38.
    Ouagne P, Bizet L, Baley C, Breard J, Bréard J, Breard J (2010) Analysis of the Film-stacking Processing Parameters for PLLA/Flax Fiber Biocomposites. J Compos Mater 44:1201–1215.  https://doi.org/10.1177/0021998309349019 CrossRefGoogle Scholar
  39. 39.
    Le Duigou A, Davies P, Baley C (2010) Macroscopic analysis of interfacial properties of flax/PLLA biocomposites. Compos Sci Technol 70:1612–1620.  https://doi.org/10.1016/j.compscitech.2010.06.001 CrossRefGoogle Scholar
  40. 40.
    Gourier C, Bourmaud A, Le Duigou A, Baley C (2017) Influence of PA11 and PP thermoplastic polymers on recycling stability of unidirectional flax fibre reinforced biocomposites. Polym Degrad Stab 136:1–9.  https://doi.org/10.1016/j.polymdegradstab.2016.12.003 CrossRefGoogle Scholar
  41. 41.
    Baley C, Kervoëlen A, Lan M, Cartié D, Le Duigou A, Bourmaud A et al (2016) Flax/PP manufacture by automated fibre placement (AFP). Mater Des 94:207–213.  https://doi.org/10.1016/j.matdes.2016.01.011 CrossRefGoogle Scholar
  42. 42.
    Merotte J, Le Duigou A, Bourmaud A, Behlouli K, Baley C (2016) Mechanical and acoustic behaviour of porosity controlled randomly dispersed flax/PP biocomposite. Polym Test 51:174–180.  https://doi.org/10.1016/j.polymertesting.2016.03.002 CrossRefGoogle Scholar
  43. 43.
    Baets J, Plastria D, Ivens I, Verpoest I (2014) Determination of the optimal flax fibre preparation for use in unidirectional flax–epoxy composites. J Reinf Plast Compos 33:493–505CrossRefGoogle Scholar
  44. 44.
    Shah DU, Schubel PJ, Licence P, Clifford MJ (2012) Determining the minimum, critical and maximum fibre content for twisted yarn reinforced plant fibre composites. Compos Sci Technol 72:1909–1917.  https://doi.org/10.1016/j.compscitech.2012.08.005 CrossRefGoogle Scholar
  45. 45.
    Liang S, Gning P-B, Guillaumat L (2015) Quasi-static behaviour and damage assessment of flax/epoxy composites. Mater Des 67:344–353.  https://doi.org/10.1016/j.matdes.2014.11.048 CrossRefGoogle Scholar
  46. 46.
    Liang S, Gning PB, Guillaumat L (2012) A comparative study of fatigue behaviour of flax/epoxy and glass/epoxy composites. Compos Sci Technol 72:535–543.  https://doi.org/10.1016/j.compscitech.2012.01.011 CrossRefGoogle Scholar
  47. 47.
    Berges M, Léger R, Placet V, Person V, Corn S, Gabrion X et al (2016) Influence of moisture uptake on the static, cyclic and dynamic behaviour of unidirectional flax fibre-reinforced epoxy laminates. Compos Part A Appl Sci Manuf 88:165–177.  https://doi.org/10.1016/j.compositesa.2016.05.029 CrossRefGoogle Scholar
  48. 48.
    Acera Fernández J, Le Moigne N, Caro-Bretelle AS, El Hage R, Le Duc A, Lozachmeur M et al (2016) Role of flax cell wall components on the microstructure and transverse mechanical behaviour of flax fabrics reinforced epoxy biocomposites. Ind Crop Prod 85:93–108.  https://doi.org/10.1016/j.indcrop.2016.02.047 CrossRefGoogle Scholar
  49. 49.
    Poilâne C, Cherif ZE, Richard F, Vivet A, Ben Doudou B, Chen J (2014) Polymer reinforced by flax fibres as a viscoelastoplastic material. Compos Struct 112:100–112.  https://doi.org/10.1016/j.compstruct.2014.01.043 CrossRefGoogle Scholar
  50. 50.
    Cherif ZE, Poilâne C, Vivet A, Ben Doudou B, Chen J (2016) About optimal architecture of plant fibre textile composite for mechanical and sorption properties. Compos Struct 140:240–251.  https://doi.org/10.1016/j.compstruct.2015.12.030 CrossRefGoogle Scholar
  51. 51.
    Santamala H, Livingston R, Sixta H, Hummel M, Skrifvars M, Saarela O (2016) Advantages of regenerated cellulose fibres as compared to flax fibres in the processability and mechanical performance of thermoset composites. Compos Part A Appl Sci Manuf 84:377–385.  https://doi.org/10.1016/j.compositesa.2016.02.011 CrossRefGoogle Scholar
  52. 52.
    Baley C, Lan M, Bourmaud A, Le Duigou A, Le Duigou A (2018) Compressive and tensile behaviour of unidirectional composites reinforced by natural fibres: Influence of fibres (flax and jute), matrix and fibre volume fraction. Mater Today Commun 16:300–306.  https://doi.org/10.1016/j.mtcomm.2018.07.003 CrossRefGoogle Scholar
  53. 53.
    Liang S, Nouri H, Lafranche E (2015) Thermo-compression forming of flax fibre-reinforced polyamide 6 composites: influence of the fibre thermal degradation on mechanical properties. J Mater Sci 50:7660–7672.  https://doi.org/10.1007/s10853-015-9330-4 CrossRefGoogle Scholar
  54. 54.
    Gibaud M, Bourmaud A, Baley C (2015) Understanding the lodging stability of green flax stems; The importance of morphology and fibre stiffness. Biosyst Eng 137:9–21.  https://doi.org/10.1016/j.biosystemseng.2015.06.005 CrossRefGoogle Scholar
  55. 55.
    Lefeuvre A, Bourmaud A, Baley C (2015) Optimization of the mechanical performance of UD flax/epoxy composites by selection of fibres along the stem. Compos Part A Appl Sci Manuf 77:204–208.  https://doi.org/10.1016/j.compositesa.2015.07.009 CrossRefGoogle Scholar
  56. 56.
    Evert R (2006) Esau’s Plant Anatomy. John Wiley & Sons, Third EditionCrossRefGoogle Scholar
  57. 57.
    Snegireva AV, Ageeva MV, Amenitskii SI, Chernova TE, Ebskamp M, Gorshkova TA (2010) Intrusive growth of sclerenchyma fibers. Russ J Plant Physiol 57:342–355.  https://doi.org/10.1134/S1021443710030052 CrossRefGoogle Scholar
  58. 58.
    Ageeva MV, Petrovská B, Kieft H, Sal’nikov VV, Snegireva AV, van Dam JEG et al (2005) Intrusive growth of flax phloem fibers is of intercalary type. Planta 222:565–574.  https://doi.org/10.1007/s00425-005-1536-2 CrossRefGoogle Scholar
  59. 59.
    Gorshkova TA, Sal’nikov VV, Chemikosova SB, Ageeva MV, Pavlencheva NV, van Dam JEG (2003) The snap point: a transition point in Linum usitatissimum bast fiber development. Ind Crop Prod 18:213–221.  https://doi.org/10.1016/S0926-6690(03)00043-8 CrossRefGoogle Scholar
  60. 60.
    Rihouey C, Paynel F, Gorshkova T, Morvan C (2017) Flax cellulosic fibres: how to assess the non-cellulosic polysaccharides and to approach cell wall supramolecular design. Cellulose 24:1985–2001CrossRefGoogle Scholar
  61. 61.
    Goudenhooft C, Siniscalco D, Arnould O, Bourmaud A, Sire O, Gorshkova TT et al (2018) Investigation of the Mechanical Properties of Flax Cell Walls during Plant Development: The Relation between Performance and Cell Wall Structure. Fibers 6:6.  https://doi.org/10.3390/fib6010006 CrossRefGoogle Scholar
  62. 62.
    Bert F. Lin fibre—culture et transformation. Arvalis; 2013.Google Scholar
  63. 63.
    Placet V, Day A, Beaugrand J (2017) The influence of unintended field retting on the physicochemical and mechanical properties of industrial hemp bast fibres. J Mater Sci 52:5759–5777.  https://doi.org/10.1007/s10853-017-0811-5 CrossRefGoogle Scholar
  64. 64.
    Djemiel C, Grec S, Hawkins S (2017) Characterization of Bacterial and Fungal Community Dynamics by High-Throughput Sequencing (HTS) Metabarcoding during Flax Dew-Retting. Front Microbiol 8:2052.  https://doi.org/10.3389/fmicb.2017.02052 CrossRefGoogle Scholar
  65. 65.
    Meijer WJM, Vertregt N, Rutgers B, van de Waart M (1995) The pectin content as a measure of the retting and rettability of flax. Ind Crop Prod 4:273–284.  https://doi.org/10.1016/0926-6690(95)00041-0 CrossRefGoogle Scholar
  66. 66.
    Sharma HSS, Faughey G, Lyons G (1999) Comparison of physical, chemical, and thermal characteristics of water-, dew-, and enzyme-retted flax fibers. J Appl Polym Sci 1:139–143CrossRefGoogle Scholar
  67. 67.
    Martin N, Mouret N, Davies P, Baley C (2013) Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites. Ind Crop Prod 49:755–767.  https://doi.org/10.1016/j.indcrop.2013.06.012 CrossRefGoogle Scholar
  68. 68.
    Van de Weyenberg I, Ivens J, De Coster A, Kino B, Baetens E, Verpoest I (2003) Influence of processing and chemical treatment of flax fibres on their composites. Compos Sci Technol 63:1241–1246.  https://doi.org/10.1016/S0266-3538(03)00093-9 CrossRefGoogle Scholar
  69. 69.
    Alix S, Lebrun L, Marais S, Philippe E, Bourmaud A, Baley C et al (2012) Pectinase treatments on technical fibres of flax: Effects on water sorption and mechanical properties. Carbohydr Polym 87:177–185.  https://doi.org/10.1016/j.carbpol.2011.07.035 CrossRefGoogle Scholar
  70. 70.
    Van de Velde K, Baetens E (2001) Thermal and Mechanical Properties of Flax Fibres as Potential Composite Reinforcement. Macromol Mater Eng 286:342–349CrossRefGoogle Scholar
  71. 71.
    Pillin I, Kervoelen A, Bourmaud A, Goimard J, Montrelay N, Baley C (2011) Could oleaginous flax fibers be used as reinforcement for polymers? Ind Crop Prod 34:1556–1563.  https://doi.org/10.1016/j.indcrop.2011.05.016 CrossRefGoogle Scholar
  72. 72.
    Akin DE, Gamble GR, Morrison Iii WH, Rigsby LL, Dodd RB, Morrison I et al (1996) Chemical and Structural Analysis of Fibre and Core Tissues from Flax. J Sci Food Agric 72:155–165.  https://doi.org/10.1002/(sici)1097-0010(199610)72:2<155::aid-jsfa636>3.0.co;2-x CrossRefGoogle Scholar
  73. 73.
    Pallesen BE (1996) The quality of combine-harvested fibre flax for industrials purposes depends on the degree of retting. Ind Crop Prod 5:65–78.  https://doi.org/10.1016/0926-6690(95)00049-6 CrossRefGoogle Scholar
  74. 74.
    Mooney C, Stolle-Smits T, Schols H, de Jong E (2001) Analysis of retted and non retted flax fibres by chemical and enzymatic means. J Biotechnol 89:205–216CrossRefGoogle Scholar
  75. 75.
    Segal L, Creely JJ, Martin AE, Conrad CM (1959) An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text Res J 29:786–794.  https://doi.org/10.1177/004051755902901003 CrossRefGoogle Scholar
  76. 76.
    Zafeiropoulos NE, Baillie CA, Matthews FL (2001) A study of transcrystallinity and its effect on the interface in flax fibre reinforced composite materials. Compos Part A Appl Sci Manuf 32:525–543.  https://doi.org/10.1016/S1359-835X(00)00058-0 CrossRefGoogle Scholar
  77. 77.
    Marrot L. Contribution au développement de matériaux composites à matrices thermodurcissables biosourcées et renforcées par des fibres végétales. University of South Brittany, 2014.Google Scholar
  78. 78.
    Aslan M, Mehmood S, Madsen B, Goutianos S. The effect of processing on defects and tensile strength of single flax fibres. ECCM14, 2010.Google Scholar
  79. 79.
    Baley C, Le Duigou A, Morvan C, Bourmaud A. Tensile properties of flax fibers. In: Bunsell AR, editor. Handb. Prop. Text. Tech. Fibres. Second Ed. Elsevier, 2018, p. 275–300.  https://doi.org/10.1016/B978-0-08-101272-7.00008-0.
  80. 80.
    Sultana C. Scutching of retted-flax straw. In: Sharma, H.S.S., Van Sumere CF, editor. Biol. Process. Flax., M Publications, Belfast, NorthernIreland.; 1992.Google Scholar
  81. 81.
    Salmon-Minotte J. Flax. In: Franck, R.R. (Ed.), editor. Bast Other Plant Fibres., CRCPress, Woodhead Publishing, Cambridge.; 2005.Google Scholar
  82. 82.
    Martin N, Davies P, Baley C (2014) Comparison of the properties of scutched flax and flax tow for composite material reinforcement. Ind Crop Prod 61:284–292.  https://doi.org/10.1016/j.indcrop.2014.07.015 CrossRefGoogle Scholar
  83. 83.
    Goudenhooft C, Bourmaud A, Baley C (2017) Varietal selection of flax over time: Evolution of plant architecture related to influence on the mechanical properties of fibers. Ind Crop Prod 97:56–64.  https://doi.org/10.1016/j.indcrop.2016.11.062 CrossRefGoogle Scholar
  84. 84.
    Lefeuvre A, Bourmaud A, Morvan C, Baley C (2014) Tensile properties of elementary fibres of flax and glass: Analysis of reproducibility and scattering. Mater Lett 130:289–291.  https://doi.org/10.1016/j.matlet.2014.05.115 CrossRefGoogle Scholar
  85. 85.
    Bourmaud A, Gibaud M, Baley C (2016) Impact of the seeding rate on flax stem stability and the mechanical properties of elementary fibres. Ind Crop Prod 80:17–25.  https://doi.org/10.1016/j.indcrop.2015.10.053 CrossRefGoogle Scholar
  86. 86.
    Barbulée A. Compréhension des effets du défibrage sur la morphologie, les propriétés et le comportement mécanique des faisceaux de fibres de lin. Etude d’un composite dérivé lin-époxyde. PhD dissertation at teh University of Caen in Lower Normandy, France., 2015.Google Scholar
  87. 87.
    Decrette M, Mourad S, Osselin J, Drean J (2016) Jacquard UNIVAL 100 parameters study for high-density weaving optimization. J Ind Text 45:1603–1618.  https://doi.org/10.1177/1528083714567241 CrossRefGoogle Scholar
  88. 88.
    Tourlonias M, Bueno MM-A, Ordan C, Poquillon D, Jordan C, Poquillon D (2018) Influence of wear on the sizing layer and desizing of single carbon fibre-to-fibre friction. Wear 402–403:64–70.  https://doi.org/10.1016/J.WEAR.2018.02.003 CrossRefGoogle Scholar
  89. 89.
    Habibi M, Laperrière L, Lebrun G, Chabot B (2016) Experimental Investigation of the Effect of Short Flax Fibers on the Permeability Behavior of a New Unidirectional Flax/Paper Composite. Fibers 4.  https://doi.org/10.3390/fib4030022
  90. 90.
    Couture A, Lebrun G, Laperrière L (2016) Mechanical properties of polylactic acid (PLA) composites reinforced with unidirectional flax and flax-paper layers. Compos Struct 154:286–295.  https://doi.org/10.1016/j.compstruct.2016.07.069 CrossRefGoogle Scholar
  91. 91.
    Ramachandran T, Gobi N, Rajendran V, Lakshmikantha C (2009) Optimization of process parameters for crease resistant finishing of coton fabric using citric acid. Indian J Fibres Text Res 34:359–367Google Scholar
  92. 92.
    Ameri E, Lebrun G, Laperrière L (2016) In-plane permeability characterization of a unidirectional flax/paper reinforcement for liquid composite molding processes. Compos Part A Appl Sci Manuf 85:52–64.  https://doi.org/10.1016/j.compositesa.2016.03.002 CrossRefGoogle Scholar
  93. 93.
    Baghaei B, Skrifvars M, Berglin L (2013) Manufacture and characterisation of thermoplastic composites made from PLA/hemp co-wrapped hybrid yarn prepregs. Compos Part A Appl Sci Manuf 50:93–101.  https://doi.org/10.1016/J.COMPOSITESA.2013.03.012 CrossRefGoogle Scholar
  94. 94.
    Goutianos S, Peijs T, Nystrom B, Skrifvars M (2006) Development of Flax Fibre based Textile Reinforcements for Composite Applications. Appl Compos Mater 13:199–215.  https://doi.org/10.1007/s10443-006-9010-2 CrossRefGoogle Scholar
  95. 95.
    Shah D, Nag N, Clifford M (2016) Why do we observe significant differences between measured and ‘back-calculated’ properties of natural fibres? Cellulose 23:1481–1490.  https://doi.org/10.1007/s10570-016-0926-x CrossRefGoogle Scholar
  96. 96.
    Shah DU (2016) Damage in biocomposites: Stiffness evolution of aligned plant fibre composites during monotonic and cyclic fatigue loading. Compos Part A Appl Sci Manuf 83:160–168.  https://doi.org/10.1016/j.compositesa.2015.09.008 CrossRefGoogle Scholar
  97. 97.
    Shah DU (2014) Natural fibre composites: Comprehensive Ashby-type materials selection charts. Mater Des 62:21–31.  https://doi.org/10.1016/j.matdes.2014.05.002 CrossRefGoogle Scholar
  98. 98.
    Xue D, Miao M, Hu H (2011) Permeability anisotropy of flax nonwoven mats in vacuum-assisted resin transfer molding. J Text Inst 102:612–620.  https://doi.org/10.1080/00405000.2010.504566 CrossRefGoogle Scholar
  99. 99.
    Das D. Introduction to composite nonwovens. In: Das D, Pourdeyhimi B, editors. Compos. nonwoven Mater. Struct. Prop. Appl., Cambridge, UK: Woodhead Publishing Series in Textiles: Number 155; 2014.Google Scholar
  100. 100.
    Das D, Pradhan AK, Chattopadhyay R, Singh SN (2012) Composite nonwovens. Text Prog 44:1–84CrossRefGoogle Scholar
  101. 101.
    INDA. INDA: Association of the Nonwoven Fabrics Industry. http://www.inda.org/. n.d.
  102. 102.
    Mosca SM (1986) Flax in nonwovens. Textilia 62:29Google Scholar
  103. 103.
    Boettcher P, Schmalz E (1993) Flax in nonwovens. Text Prax Int 48:585Google Scholar
  104. 104.
    Maity S, Gon DP, Paul P (2014) A Review of Flax Nonwovens: Manufacturing, Properties, and Applications. J Nat Fibers 11:365–390.  https://doi.org/10.1080/15440478.2013.861781 CrossRefGoogle Scholar
  105. 105.
    Fages E, Gironés S, Sánchez-Nacher L, García-Sanoguera D, Balart R (n.d.) Use of wet-laid techniques to form flax-polypropylene nonwovens as base substrates for eco-friendly composites by using hot-press molding. Polym Compos 33:253–261.  https://doi.org/10.1002/pc.22147
  106. 106.
    Gnaba I, Omrani F, Wang P, Soulat D, Ferreira M, Vroman P et al (n.d.) Mechanical behavior of flax/polypropylene commingled nonwoven at dry scale: Influence of process parameters. Text Res J 0:0040517518755789.  https://doi.org/10.1177/0040517518755789
  107. 107.
    Moryganov AP, Galashina VN, Dymnikova NS, Stokozenko VG, Danilov AR (2008) Modification of flax fibres: From research to realization. Fibre Chem 40:234–240.  https://doi.org/10.1007/s10692-008-9046-1 CrossRefGoogle Scholar
  108. 108.
    Ecotechnilin. Ecotechnilin. http://www.eco-technilin.com/activity-process.asp n.d.
  109. 109.
    Merotte J, Le Duigou A, Kervoelen A, Bourmaud A, Behlouli K, Sire O et al (2018) Flax and hemp nonwoven composites: The contribution of interfacial bonding to improving tensile properties. Polym Test 66:303–311.  https://doi.org/10.1016/j.polymertesting.2018.01.019 CrossRefGoogle Scholar
  110. 110.
    Anandjiwala RD, Boguslavsky L (2008) Development of Needle-punched Nonwoven Fabrics from Flax Fibers for Air Filtration Applications. Text Res J 78:614–624.  https://doi.org/10.1177/0040517507081837 CrossRefGoogle Scholar
  111. 111.
    Zhang L, Miao M (2010) Commingled natural fibre/polypropylene wrap spun yarns for structured thermoplastic composites. Compos Sci Technol 70:130–135.  https://doi.org/10.1016/j.compscitech.2009.09.016 CrossRefGoogle Scholar
  112. 112.
    Jiang Z, Yu C, Yang J, Han G, Xing M (2017) Estimation of yarn strength based on critical slipping length and fiber length distribution. Text Res J 16.  https://doi.org/10.1177/0040517517741160
  113. 113.
    Hearle J, Grosberg P, Backer S (1969) Structural mechanics of fibers, yarns and fabrics. Wiley- Interscience, New YorkGoogle Scholar
  114. 114.
    Pan N (1992) Development of a Constitutive Theory for Short Fiber Yarns: Mechanics of Staple Yarn Without Slippage Effect. Text Res J 62:749–765.  https://doi.org/10.1177/004051759206201208 CrossRefGoogle Scholar
  115. 115.
    Pan N (1993) Development of a Constitutive Theory for Short Fiber Yarns Part II: Mechanics of Staple Yarn With Slippage Effect. Text Res J 63:504–514.  https://doi.org/10.1177/004051759306300902 CrossRefGoogle Scholar
  116. 116.
    Pan N (1993) Development of a Constitutive Theory for Short Fiber Yams: Part III: Effects of Fiber Orientation and Bending Deformation. Text Res J 63:565–572.  https://doi.org/10.1177/004051759306301002 CrossRefGoogle Scholar
  117. 117.
    Frydrych I (1992) A New Approach for Predicting Strength Properties of Yarn. Text Res J 62:340–348.  https://doi.org/10.1177/004051759206200606 CrossRefGoogle Scholar
  118. 118.
    Frydrych I (1995) Relation of Single Fiber and Bundle Strengths of Cotton. Text Res J 65:513–521.  https://doi.org/10.1177/004051759506500905 CrossRefGoogle Scholar
  119. 119.
    Pan N (1993) Prediction of statistical strengths of twisted fibre structures. J Mater Sci 28:6107–6114.  https://doi.org/10.1007/BF00365030 CrossRefGoogle Scholar
  120. 120.
    Pan N, Hua T, Qiu Y (2001) Relationship Between Fiber and Yarn Strength. Text Res J 71:960–964.  https://doi.org/10.1177/004051750107101105 CrossRefGoogle Scholar
  121. 121.
    Gregory J (1953) Cotton yarn structure Part IV—The Strength of twisted yarn elements in relation to the properties of the constituents fibres. J Text Inst Trans 44:T499–T514.  https://doi.org/10.1080/19447025308662613 CrossRefGoogle Scholar
  122. 122.
    Jiang Z, Hu Y, Kuang X, Yu C, Yang J (2014) Simulation on fiber random arrangement in the yarn. J Text Inst 105:1312–1318.  https://doi.org/10.1080/00405000.2014.891685 CrossRefGoogle Scholar
  123. 123.
    Yan G, Yu C (2007) A joint influence of the distributions of fiber length and fineness on the strength efficiency of the fibers in yarn. Fibers Polym 8:309–312.  https://doi.org/10.1007/BF02877275 CrossRefGoogle Scholar
  124. 124.
    Omrani F, Wang P, Soulat D, Ferreira M (2017) Mechanical properties of flax-fibre-reinforced preforms and composites: Influence of the type of yarns on multi-scale characterisations. Compos Part A Appl Sci Manuf 93:72–81.  https://doi.org/10.1016/J.COMPOSITESA.2016.11.013 CrossRefGoogle Scholar
  125. 125.
    Belaadi A, Bourchak M, Aouici H (2016) Mechanical properties of vegetal yarn: Statistical approach. Compos Part B Eng 106:139–153.  https://doi.org/10.1016/J.COMPOSITESB.2016.09.033 CrossRefGoogle Scholar
  126. 126.
    Blanchard JMFA, Sobey AJJ, Blake JIRIR (2016) Multi-scale investigation into the mechanical behaviour of flax in yarn, cloth and laminate form. Compos Part B Eng 84:228–235.  https://doi.org/10.1016/j.compositesb.2015.08.086 CrossRefGoogle Scholar
  127. 127.
    Khalfallah M, Abbès B, Abbès F, Guo YQ, Marcel V, Duval A et al (2014) Innovative flax tapes reinforced Acrodur biocomposites: A new alternative for automotive applications. Mater Des 64:116–126.  https://doi.org/10.1016/j.matdes.2014.07.029 CrossRefGoogle Scholar
  128. 128.
    Shah DU, Schubel PJ, Clifford MJ (2013) Modelling the effect of yarn twist on the tensile strength of unidirectional plant fibre yarn composites. J Compos Mater 47:425–436.  https://doi.org/10.1177/0021998312440737 CrossRefGoogle Scholar
  129. 129.
    Goutianos S, Peijs T (2003) The optimization of flax fibre yarns for the development of high-performance natural fibre composites. Adv Compos Lett 13:199–215Google Scholar
  130. 130.
    Dissanayake NPJ, Summerscales J, Grove SM, Singh MM (2009) Energy Use in the Production of Flax Fiber for the Reinforcement of Composites. J Nat Fibers 6:331–346.  https://doi.org/10.1080/15440470903345784 CrossRefGoogle Scholar
  131. 131.
  132. 132.
  133. 133.
  134. 134.
  135. 135.
    Imam SH, Bilbao-Sainz C, Chiou B-S, Glenn GM, Orts WJ (2013) Biobased adhesives, gums, emulsions, and binders: current trends and future prospects. J Adhes Sci Technol 27:1972–1997.  https://doi.org/10.1080/01694243.2012.696892 CrossRefGoogle Scholar
  136. 136.
  137. 137.
    Parija S, Misra M, Mohanty AK (2001) Studies of natural gum adhesive extracts: an overview. J Macromol Sci Part C 41:175–197.  https://doi.org/10.1081/MC-100107775 CrossRefGoogle Scholar
  138. 138.
    Veluraja K, Ayyalnarayanasubburaj S, Paulraj AJ (1997) Preparation of gum from Tamarind seed — and its application in the preparation of composite material with sisal fibre. Carbohydr Polym 34:377–379.  https://doi.org/10.1016/S0144-8617(97)00128-8 CrossRefGoogle Scholar
  139. 139.
    Oswamani B, Ananjiwala R, Hall D (2004) Textile Sizing. Marcel Dekker, IncGoogle Scholar
  140. 140.
    Opwis K, Mayer-Gall T, Gutmann JS, Dammer C, Titscher T, Nickisch-Hartfiel A et al (2012) Semi-industrial production of methane from textile wastewaters. Energy Sustain Soc 2:1–6.  https://doi.org/10.1186/2192-0567-2-1 CrossRefGoogle Scholar
  141. 141.
    Kumar N, Das D (2017) Fibrous biocomposites from nettle (Girardinia diversifolia) and poly(lactic acid) fibers for automotive dashboard panel application. Compos Part B Eng 130:54–63.  https://doi.org/10.1016/j.compositesb.2017.07.059 CrossRefGoogle Scholar
  142. 142.
    Lawrence C (2010) Advances in yarn spinning technology. Woodhead Publishing Series in TextilesGoogle Scholar
  143. 143.
    Gu H, Miao M (2014) Optimising fibre alignment in twisted yarns for natural fibre composites. J Compos Mater 48:2993–3002.  https://doi.org/10.1177/0021998313504322 CrossRefGoogle Scholar
  144. 144.
    Rask M, Madsen B. Twisting of fibres in yarns for natural fibre composites. ICCM18 – 18th Int. Conf. Compos. Mater. Jeju Island, Korea., 2011, p. 5.Google Scholar
  145. 145.
    Bensadoun F, Vallons KAM, Lessard LB, Verpoest I, Van Vuure AW (2015) Fatigue behaviour assessment of flax-epoxy composites. Compos Part A Appl Sci Manuf 82:253–266.  https://doi.org/10.1016/j.compositesa.2015.11.003 CrossRefGoogle Scholar
  146. 146.
    Bensadoun F (2016) In-service behaviour of flax fibre reinforced composites for high performance applications. Phd-thesis of Faculty of Engineering Science, KU LeuvenGoogle Scholar
  147. 147.
    Ma H, Li Y, Wang D (2014) Investigations of fiber twist on the mechanical properties of sisal fiber yarns and their composites. J Reinf Plast Compos 33:687–696.  https://doi.org/10.1177/0731684413520187 CrossRefGoogle Scholar
  148. 148.
    Lansiaux H, Corbin AC, Soulat D, Boussu F, Ferreira M, Labanieh AR (2018) Identification du comportement mécanique de tissu 3D interlock chaine à base de mèches de lin. Journées Jeunes Cherch. en Ecocomposites Compos. Bio-sourcés, ENI-TarbesGoogle Scholar
  149. 149.
    Xie Y, Oxenham W, Grosberg P (1986) 24—A study of the strength of wrapped yarn part I: the theorical model. J Text Inst 77:295–304.  https://doi.org/10.1080/00405008608658424 CrossRefGoogle Scholar
  150. 150.
    Xie Y, Oxenham W, Grosberg P (1986) 25—A study of the strength of wrapped yarns part II: computation and experimental. J Text Inst 77:305–313.  https://doi.org/10.1080/00405008608658425 CrossRefGoogle Scholar
  151. 151.
    Xie Y, Oxenham W, Grosberg P (1986) 26—A study of the strength of wrapped yarns part III: The relationship between structural paraleters and strength. J Text Inst 77:314–326.  https://doi.org/10.1080/00405008608658426 CrossRefGoogle Scholar
  152. 152.
    Jiang J, Chen N (2012) Preforms and composites manufactured by novel flax/polypropylene cowrap spinning method. J Compos Mater 46:2097–2109.  https://doi.org/10.1177/0021998311430155 CrossRefGoogle Scholar
  153. 153.
    Khondker OA, Ishiaku US, Nakai A, Hamada H (2006) A novel processing technique for thermoplastic manufacturing of unidirectional composites reinforced with jute yarns. Compos Part A Appl Sci Manuf 37:2274–2284.  https://doi.org/10.1016/j.compositesa.2005.12.030 CrossRefGoogle Scholar
  154. 154.
    Jayaraman K (2003) Manufacturing sisal–polypropylene composites with minimum fibre degradation. Compos Sci Technol 63:367–374.  https://doi.org/10.1016/S0266-3538(02)00217-8 CrossRefGoogle Scholar
  155. 155.
    Kobayashi S, Takada K (2013) Processing of unidirectional hemp fiber reinforced composites with micro-braiding technique. Compos Part A Appl Sci Manuf 46:173–179.  https://doi.org/10.1016/j.compositesa.2012.11.012 CrossRefGoogle Scholar
  156. 156.
    Bar M, Das A, Alagirusamy R (2018) Effect of interface on composites made from DREF spun hybrid yarn with low twisted core flax yarn. Compos Part A Appl Sci Manuf 107:260–270.  https://doi.org/10.1016/j.compositesa.2018.01.003 CrossRefGoogle Scholar
  157. 157.
    Bar M, Das A, Alagirusamy R (2017) Studies on flax-polypropylene based low-twist hybrid yarns for thermoplastic composite reinforcement. J Reinf Plast Compos 36:818–831.  https://doi.org/10.1177/0731684417693428 CrossRefGoogle Scholar
  158. 158.
    Alagirusamy R, Fangueiro R, Ogale V, Padaki N (2006) Hybrid Yarns and Textile Preforming for Thermoplastic Composites. Text Prog 38:1–71.  https://doi.org/10.1533/tepr.2006.0004 CrossRefGoogle Scholar
  159. 159.
    Selver E, Potluri E, Selver PP (2017) Glass/Polypropylene commingled yarns for damage tolerant thermoplastic composites. Eur Mech Sci 1:93–103CrossRefGoogle Scholar
  160. 160.
    Sathishkumar TP, Naveen J, Satheeshkumar S (2014) Hybrid fiber reinforced polymer composites – a review. J Reinf Plast Compos 33:454–471.  https://doi.org/10.1177/0731684413516393 CrossRefGoogle Scholar
  161. 161.
    Wang P, Legrand X, Soulat D. Three-Dimentional Textile Preform Using Advanced Textile Technologies for Composite Manufacturing. In: Kumar B, editor. Text. Adv. Appl., Rijeka: InTech; 2017.  https://doi.org/10.5772/intechopen.68175.
  162. 162.
    Gommer F, Endruweit A, Long AC (2016) Quantification of micro-scale variability in fibre bundles. Compos Part A Appl Sci Manuf 87:131–137.  https://doi.org/10.1016/j.compositesa.2016.04.019 CrossRefGoogle Scholar
  163. 163.
    Misnon MI, Islam MM, Epaarachchi JA, Lau KT (2015) Analyses of woven hemp fabric characteristics for composite reinforcement. Mater Des 66:82–92.  https://doi.org/10.1016/j.matdes.2014.10.037 CrossRefGoogle Scholar
  164. 164.
    Ouagne P, Soulat D, Tephany C, Duriatti D, Allaoui S, Hivet G (2013) Mechanical characterisation of flax-based woven fabrics and in situ measurements of tow tensile strain during the shape forming. J Compos Mater 47:3501–3515.  https://doi.org/10.1177/0021998312467217 CrossRefGoogle Scholar
  165. 165.
    Ouagne P, Soulat D, Moothoo J, Capelle E, Gueret S (2013) Complex shape forming of a flax woven fabric; analysis of the tow buckling and misalignment defect. Compos Part A Appl Sci Manuf 51:1–10.  https://doi.org/10.1016/j.compositesa.2013.03.017 CrossRefGoogle Scholar
  166. 166.
    Capelle E, Ouagne P, Soulat D, Duriatti D (2014) Complex shape forming of flax woven fabrics: Design of specific blank-holder shapes to prevent defects. Compos Part B Eng 62:29–36.  https://doi.org/10.1016/j.compositesb.2014.02.007 CrossRefGoogle Scholar
  167. 167.
    Duc F, Bourban P-E, Månson J-AE (2014) Dynamic mechanical properties of epoxy/flax fibre composites. J Reinf Plast Compos 33:1625–1633.  https://doi.org/10.1177/0731684414539779 CrossRefGoogle Scholar
  168. 168.
    Xue D, Hu H (2013) Mechanical properties of biaxial weft-knitted flax composites. Mater Des 46:264–269.  https://doi.org/10.1016/j.matdes.2012.10.019 CrossRefGoogle Scholar
  169. 169.
    Jacquot P-B, Wang P, Soulat D, Legrand X (2016) Analysis of the preforming behaviour of the braided and woven flax/polyamide fabrics. J Ind Text 46:698–718.  https://doi.org/10.1177/1528083715591592 CrossRefGoogle Scholar
  170. 170.
    Ouagne P, Soulat D, Hivet G, Duriatti D (2011) Analysis of defects during the preforming of a woven flax reinforcement. Adv Compos Lett 20:105–108Google Scholar
  171. 171.
    Potter K, Khan B, Wisnom M, Bell T, Stevens J (2008) Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures. Compos Part A Appl Sci Manuf 39:1343–1354.  https://doi.org/10.1016/j.compositesa.2008.04.016 CrossRefGoogle Scholar
  172. 172.
    Allaoui S, Hivet G, Soulat D, Wendling A, Ouagne P, Chatel S (2014) Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement. Int J Mater Form 7:155–165.  https://doi.org/10.1007/s12289-012-1116-5 CrossRefGoogle Scholar
  173. 173.
    Ouagne P, Soulat D, Tephany C, Moothoo J, Allaoui S, Hivet G, et al. Complex Shape Forming of Flax Based Woven Fabrics - Analysis of the Yarn Tensile Strain during the Process. Mater. Form. ESAFORM 2012, vol. 504, Trans Tech Publications; 2012, p. 231–6.  https://doi.org/10.4028/www.scientific.net/KEM.504-506.231.
  174. 174.
    Moothoo J, Allaoui S, Ouagne P, Soulat D (2014) A study of the tensile behaviour of flax tows and their potential for composite processing. Mater Des 55:764–772.  https://doi.org/10.1016/j.matdes.2013.10.048 CrossRefGoogle Scholar
  175. 175.
    Ouagne P, Soulat D, Tephany C, Gillibert J (2016) Measurement of the Appearance and Growth of Tow Buckling Defect in the Frame of Complex Shape Manufacturing Process by Using Fringe Projection Technique. Strain 52:559–569.  https://doi.org/10.1111/str.12206 CrossRefGoogle Scholar
  176. 176.
    Tephany C, Gillibert J, Ouagne P, Hivet G, Allaoui S, Soulat D (2016) Development of an experimental bench to reproduce the tow buckling defect appearing during the complex shape forming of structural flax based woven composite reinforcements. Compos Part A Appl Sci Manuf 81:22–33.  https://doi.org/10.1016/j.compositesa.2015.10.011 CrossRefGoogle Scholar
  177. 177.
    Omrani F, Wang P, Soulat D, Ferreira M, Ouagne P (2017) Analysis of the deformability of flax-fibre nonwoven fabrics during manufacturing. Compos Part B Eng 116:471–485.  https://doi.org/10.1016/j.compositesb.2016.11.003 CrossRefGoogle Scholar
  178. 178.
    Cadu T, Berges M, Sicot O, Person V, Piezel B, Van Schoors L et al (2018) What are the key parameters to produce a high-grade bio-based composite? Application to flax/epoxy UD laminates produced by thermocompression. Compos Part B Eng 150:36–46.  https://doi.org/10.1016/J.COMPOSITESB.2018.04.059 CrossRefGoogle Scholar
  179. 179.
    Aslan M, Mehmood S, Madsen B (2013) Effect of consolidation pressure on volumetric composition and stiffness of unidirectional flax fibre composites. J Mater Sci 48:3812–3824.  https://doi.org/10.1007/s10853-013-7182-3 CrossRefGoogle Scholar
  180. 180.
    Baley C, Busnel F, Grohens Y, Sire O (2006) Influence of chemical treatments on surface properties and adhesion of flax fibre–polyester resin. Compos Part A Appl Sci Manuf 37:1626–1637.  https://doi.org/10.1016/j.compositesa.2005.10.014 CrossRefGoogle Scholar
  181. 181.
    Andème-Onzighi C, Girault R, His I, Morvan C, Driouich A (2000) Immunocytochemical characterization of early-developing flax fiber cell walls. Protoplasma 213:235–245.  https://doi.org/10.1007/BF01282161 CrossRefGoogle Scholar
  182. 182.
    Bismarck A, Aranberri-Askargorta I, Springer J, Lampke T, Wielage B, Stamboulis A et al (2002) Surface characterization of flax, hemp and cellulose fibers; Surface properties and the water uptake behavior. Polym Compos 23:872–894CrossRefGoogle Scholar
  183. 183.
    Hughes M, Sèbe G, Hague J, Hill C, Spear M, Mott L (2000) An investigation into the effects of micro-compressive defects on interphase behaviour in hemp-epoxy composites using half-fringe photoelasticity. Compos Interfaces 7:13–29.  https://doi.org/10.1163/156855400300183551 CrossRefGoogle Scholar
  184. 184.
    Pitkethly M, Favre J, Gaur U, Jakubowski J, Mudrich S, Cadlwell D et al (1993) A round robin programm on interfacial test methods. Compos Sci Technol:205–214Google Scholar
  185. 185.
    Graupner N, Rößler J, Ziegmann G, Müssig J (2014) Fibre/matrix adhesion of cellulose fibres in PLA, PP and MAPP: A critical review of pull-out test, microbond test and single fibre fragmentation test results. Compos Part A Appl Sci Manuf 63:133–148.  https://doi.org/10.1016/j.compositesa.2014.04.011 CrossRefGoogle Scholar
  186. 186.
    Baley C, Davies P, Grohens Y, Dolto G (2004) Application of Interlaminar Tests to Marine Composites. A Literature Review Appl Compos Mater 11.  https://doi.org/10.1023/B:ACMA.0000012902.93986.bf
  187. 187.
    Le Duigou A, Bourmaud A, Gourier C, Baley C (2016) Multi-scale shear properties of flax fibre reinforced polyamide 11 biocomposites. Compos Part A Appl Sci Manuf 85:123–129.  https://doi.org/10.1016/j.compositesa.2016.03.014 CrossRefGoogle Scholar
  188. 188.
    Marrot L, Bourmaud A, Bono P, Baley C (2014) Multi-scale study of the adhesion between flax fibers and biobased thermoset matrices. Mater Des 62:47–56.  https://doi.org/10.1016/j.matdes.2014.04.087 CrossRefGoogle Scholar
  189. 189.
    Le Duigou A, Davies P, Baley C (2010) Interfacial bonding of Flax fibre/Poly(l-lactide) bio-composites. Compos Sci Technol 70:231–239.  https://doi.org/10.1016/j.compscitech.2009.10.009 CrossRefGoogle Scholar
  190. 190.
    Garkhail S, Wieland B, George J, Soykeabkaew N, Peijs T (2009) Transcrystallisation in PP/flax composites and its effect on interfacial and mechanical properties. J Mater Sci 44:510–519.  https://doi.org/10.1007/s10853-008-3089-9 CrossRefGoogle Scholar
  191. 191.
    Le Duigou A, Kervoelen A, Le Grand A, Nardin M, Baley C (2014) Interfacial properties of flax fibre–epoxy resin systems: Existence of a complex interphase. Compos Sci Technol 100:152–157.  https://doi.org/10.1016/j.compscitech.2014.06.009 CrossRefGoogle Scholar
  192. 192.
    Manchado MAL, Arroyo M, Biagiotti J, Kenny JM (2003) Enhancement of mechanical properties and interfacial adhesion of PP/EPDM/flax fiber composites using maleic anhydride as a compatibilizer. J Appl Polym Sci 90:2170–2178.  https://doi.org/10.1002/app.12866 CrossRefGoogle Scholar
  193. 193.
    Baley C, Grohens Y, Busnel F, Davies P (2004) Application of Interlaminar Tests to Marine Composites. Relation between Glass Fibre/Polymer Interfaces and Interlaminar Properties of Marine Composites. Appl Compos Mater 11.  https://doi.org/10.1023/B:ACMA.0000012884.02847.65
  194. 194.
    Le Duigou A, Bourmaud A, Balnois E, Davies P, Baley C (2012) Improving the interfacial properties between flax fibres and PLLA by a water fibre treatment and drying cycle. Ind Crop Prod 39:31–39.  https://doi.org/10.1016/j.indcrop.2012.02.001 CrossRefGoogle Scholar
  195. 195.
    Baley C, Le Duigou A, Bourmaud A, Davies P, Nardin M, Morvan C, et al. Reinforcement of polymers by flax fibers: role of interfaces. Bio-based compos. High-performance mater., CRC Press 2014, p. 87–112.  https://doi.org/10.1201/b17601-7.
  196. 196.
    Gindl W, Gupta HS (2002) Cell-wall hardness and Young’s modulus of melamine-modified spruce wood by nano-indentation. Compos Part A Appl Sci Manuf 33:1141–1145.  https://doi.org/10.1016/S1359-835X(02)00080-5 CrossRefGoogle Scholar
  197. 197.
    Bos H, Molenveld K, Teunissen W, Van Wingerde A, Van Delft D (2004) Compressive behaviour of unidirectional flax fibre reinforced composites. J Mater Sci 39:2159–2168CrossRefGoogle Scholar
  198. 198.
    Alix S, Goimard J, Morvan C, Baley C. Influence of pectin structure on the mechanical properties of flax fibres: A comparison between linseed-winter variety (Oliver) and a fibre-spring variety of flax (Hermes). 2009.  https://doi.org/10.3920/978-90-8686-677-9.
  199. 199.
    Charlet K, Baley C, Morvan C, Jernot JP, Gomina M, Bréard J (2007) Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Compos Part A Appl Sci Manuf 38:1912–1921.  https://doi.org/10.1016/j.compositesa.2007.03.006 CrossRefGoogle Scholar
  200. 200.
    Pucci MF, Liotier P-JJ, Drapier S (2015) Capillary effects on flax fibers - Modification and characterization of the wetting dynamics. Compos Part A Appl Sci Manuf 77:257–265.  https://doi.org/10.1016/j.compositesa.2015.03.010 CrossRefGoogle Scholar
  201. 201.
    Pucci MF, Seghini MC, Liotier P-J, Sarasini F, Tirilló J, Drapier S (2017) Surface characterisation and wetting properties of single basalt fibres. Compos Part B Eng 109:72–81.  https://doi.org/10.1016/j.compositesb.2016.09.065 CrossRefGoogle Scholar
  202. 202.
    Bourgois J, Guyonnet R (1988) Characterization and analysis of torrefied wood. Wood Sci Technol 22:143–155.  https://doi.org/10.1007/BF00355850 CrossRefGoogle Scholar
  203. 203.
    Dirol D, Guyonnet R. The improvement of wood durability by ratification process. Doc. 40015, Int. Res. Gr. wood Preserv., IRG; 1993, p. 1–11.Google Scholar
  204. 204.
    Pucci MF, Liotier P-JJ, Drapier S (2016) Capillary wicking in flax fabrics - Effects of swelling in water. Colloids Surfaces A Physicochem Eng Asp 498:176–184.  https://doi.org/10.1016/j.colsurfa.2016.03.050 CrossRefGoogle Scholar
  205. 205.
    Pucci MF, Liotier P-J, Seveno D, Fuentes C, Van Vuure A, Drapier S (2017) Wetting and swelling property modifications of elementary flax fibres and their effects on the Liquid Composite Molding process. Compos Part A Appl Sci Manuf 97:31–40.  https://doi.org/10.1016/j.compositesa.2017.02.028 CrossRefGoogle Scholar
  206. 206.
    Ross K, Mazza G (2010) Characteristics of Lignin from Flax Shives as Affected by Extraction Conditions. Int J Mol Sci 11:4035–4050.  https://doi.org/10.3390/ijms11104035 CrossRefGoogle Scholar
  207. 207.
    Pucci MF, Liotier P-J, Drapier S (2015) Capillary wicking in a fibrous reinforcement – Orthotropic issues to determine the capillary pressure components. Compos Part A Appl Sci Manuf 77:133–141.  https://doi.org/10.1016/j.compositesa.2015.05.031 CrossRefGoogle Scholar
  208. 208.
    Bozaci E, Sever K, Sarikanat M, Seki Y, Demir A, Ozdogan E et al (2013) Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber–matrix for composite materials. Compos Part B Eng 45:565–572.  https://doi.org/10.1016/j.compositesb.2012.09.042 CrossRefGoogle Scholar
  209. 209.
    Ventura H, Claramunt J, Navarro A, Rodriguez-Perez MA, Ardanuy M (2016) Effects of Wet/Dry-Cycling and Plasma Treatments on the Properties of Flax Nonwovens Intended for Composite Reinforcing. Materials (Basel) 9:1–18CrossRefGoogle Scholar
  210. 210.
    Bourmaud A, Le Duigou A, Gourier C, Baley C (2016) Influence of processing temperature on mechanical performance of unidirectional polyamide 11-flax fibre composites. Ind Crop Prod 84:151–165.  https://doi.org/10.1016/j.indcrop.2016.02.007 CrossRefGoogle Scholar
  211. 211.
    Paris O, Zollfrank C, Zickler GA (2005) Decomposition and carbonisation of wood biopolymers—a microstructural study of softwood pyrolysis. Carbon N Y 43:53–66.  https://doi.org/10.1016/j.carbon.2004.08.034 CrossRefGoogle Scholar
  212. 212.
    Zollfrank C, Fromm J (2009) Ultrastructural development of the softwood cell wall during pyrolysis. Holzforschung 63:248–253.  https://doi.org/10.1515/HF.2009.031 CrossRefGoogle Scholar
  213. 213.
    Li Y, Yin L, Huang C, Meng Y, Fu F, Wang S et al (2015) Quasi-static and dynamic nanoindentation to determine the influence of thermal treatment on the mechanical properties of bamboo cell walls. Holzforschung 69:909–914.  https://doi.org/10.1515/hf-2014-0112 CrossRefGoogle Scholar
  214. 214.
    Zickler G, Schoberl T, Paris O (2006) Mechanical properties of pyrolysed wood: a nanoindentation study. Philos Mag 86:1373–1386CrossRefGoogle Scholar
  215. 215.
    Stanzl-Tschegg S, Beikircher W, Loidl D (2009) Comparison of mechanical properties of thermally modified wood at growth ring and cell wall level by means of instrumented indentation tests. Holzforschung 63:443–448.  https://doi.org/10.1515/HF.2009.085 CrossRefGoogle Scholar
  216. 216.
    Yin Y, Berglund L, Salmén L (2011) Effect of Steam Treatment on the Properties of Wood Cell Walls. Biomacromolecules 12:194–202.  https://doi.org/10.1021/bm101144m CrossRefGoogle Scholar
  217. 217.
    Soccalingame L, Bourmaud A, Perrin D, Bénézet J-C, Bergeret A (2015) Reprocessing of wood flour reinforced polypropylene composites: Impact of particle size and coupling agent on composite and particle properties. Polym Degrad Stab 113:72–85.  https://doi.org/10.1016/j.polymdegradstab.2015.01.020 CrossRefGoogle Scholar
  218. 218.
    Bourmaud A, Åkesson D, Beaugrand J, Le Duigou A, Skrifvars M, Baley C (2016) Recycling of L-Poly-(lactide)-Poly-(butylene-succinate)-flax biocomposite. Polym Degrad Stab 128:77–88.  https://doi.org/10.1016/j.polymdegradstab.2016.03.018 CrossRefGoogle Scholar
  219. 219.
    Baley C, Le Duigou A, Bourmaud A, Davies P (2012) Influence of drying on the mechanical behaviour of flax fibres and their unidirectional composites. Compos Part A Appl Sci Manuf 43:1226–1233.  https://doi.org/10.1016/j.compositesa.2012.03.005 CrossRefGoogle Scholar
  220. 220.
    Gourier C, Le Duigou A, Bourmaud A, Baley C, Le Duigou A, Bourmaud A et al (2014) Mechanical analysis of elementary flax fibre tensile properties after different thermal cycles. Compos Part A Appl Sci Manuf 64:159–166.  https://doi.org/10.1016/j.compositesa.2014.05.006 CrossRefGoogle Scholar
  221. 221.
    Doumbia ASAS, Castro M, Jouannet D, Kervoëlen A, Falher T, Cauret L, et al. Flax/polypropylene composites for lightened structures: Multiscale analysis of process and fibre parameters 2015;87:331–341.  https://doi.org/10.1016/j.matdes.2015.07.139.
  222. 222.
    Lefeuvre A, Le Duigou A, Bourmaud A, Kervoelen A, Morvan C, Baley C (2015) Analysis of the role of the main constitutive polysaccharides in the flax fibre mechanical behaviour. Ind Crop Prod 76:1039–1048.  https://doi.org/10.1016/j.indcrop.2015.07.062 CrossRefGoogle Scholar
  223. 223.
    Li M, Tucker C (2002) Modeling and simulation of two-dimensional consolidation for thermoset matrix composites. Compos Part A Appl Sci Manuf 33:877–892.  https://doi.org/10.1016/S1359-835X(02)00017-9 CrossRefGoogle Scholar
  224. 224.
    Michaud V. A Review of Non-saturated Resin Flow in Liquid Composite Moulding processes. Transp Porous Media 2016.  https://doi.org/10.1007/s11242-016-0629-7.
  225. 225.
    Svanberg MJ, Holmberg JA (2002) Predictions of Manufacturing Induced Shape Distortions. Lulea University of Technology, SwedenGoogle Scholar
  226. 226.
    Masoodi R, Pillai KM (2011) Modeling the processing of natural fiber composites made using liquid composites molding. Handb Bioplastics Biocomposites Eng Appl Ed by S Pilla, Scrivener-WileyCrossRefGoogle Scholar
  227. 227.
    Nguyen VH, Deléglise-Lagardère M, Park CH (2015) Modeling of resin flow in natural fiber reinforcement for liquid composite molding processes. Compos Sci Technol 113:38–45CrossRefGoogle Scholar
  228. 228.
    Masoodi R, Pillai KM (2010) Darcy’s law-based model for wicking in paper-like swelling porous media. AICHE J 56:2257–2267Google Scholar
  229. 229.
    Gibson PW, Charmchi M (1997) Modeling convection/diffusion processes in porous textiles with inclusion of humidity-dependent air permeability. Int Commun Heat Mass Transf 24:709–724.  https://doi.org/10.1016/S0735-1933(97)00056-0 CrossRefGoogle Scholar
  230. 230.
    Wisnom M, Gigliotti M, Ersoy N, Campbell M, Potter K (2006) Mechanisms generating residual stresses and distortion during manufacture of polymer–matrix composite structures. Compos Part A Appl Sci Manuf 37:522–529.  https://doi.org/10.1016/j.compositesa.2005.05.019 CrossRefGoogle Scholar
  231. 231.
    Waris M, Liotier PJ, Drapier S (2014) Effect of the mold on the residual strain field monitored with optical fibers sensors in resin transfer molding processes. J Compos Mater 48:2589–2601.  https://doi.org/10.1177/0021998313501532 CrossRefGoogle Scholar
  232. 232.
    Pucci MF, Liotier P-J, Seveno D, Fuentes C, Van Vuure A (2015) Effect of thermal treatment on the interfacial properties of flax fibers. Conf Proceeding ICCM19. Copenhagen:19–24Google Scholar
  233. 233.
    Pucci MF, Liotier PJ, Drapier S (2017) Tensiometric method to reliably assess wetting properties of single fibers with resins: Validation on cellulosic reinforcements for composites. Colloids Surfaces A Physicochem Eng Asp 512:26–33.  https://doi.org/10.1016/j.colsurfa.2016.09.047 CrossRefGoogle Scholar
  234. 234.
    Blais M, Moulin N, Liotier P-J, Drapier S (2016) Numerical simulation of resin infusion based processes on a new generation of structural reinforcements for aeronautics | Simulation num?rique du proc?d? par infusion de r?sine d’une nouvelle g?n?ration de renforts structuraux pour l’a?ronautique. Mater Tech 104.  https://doi.org/10.1051/mattech/2016027
  235. 235.
    Ouahbi T, Saouab A, Breard J, Ouagne P, Chatel S, Bréard JJ et al (2007) Modelling of hydro-mechanical coupling in infusion processes. Compos Part A Appl Sci Manuf 38:1646–1654.  https://doi.org/10.1016/j.compositesa.2007.03.002 CrossRefGoogle Scholar
  236. 236.
    Darcy H (1856) Les Fontaines Publiques de la Ville de Dijon. Victor Dalmont, ParisGoogle Scholar
  237. 237.
    Arbter R, Beraud JM, Binetruy C, Bizet L, Bréard J, Comas-Cardona S et al (2011) Experimental determination of the permeability of textiles: a benchmark exercise. Compos Part A Appl Sci Manuf 42:1157–1168CrossRefGoogle Scholar
  238. 238.
    Lundstrom TS, Stenberg R, Bergström R, Partanen H, Birkeland PA (2000) In-plane permeability measurements: a nordic round-robin study. Compos Part A Appl Sci Manuf 31:29–43.  https://doi.org/10.1016/S1359-835X(99)00058-5 CrossRefGoogle Scholar
  239. 239.
    Um M-K, Daniel IM, Childs BW (2001) A gas flow method for determination of in-plane permeability of fiber preforms. Polym Compos 22:47–56.  https://doi.org/10.1002/pc.10515 CrossRefGoogle Scholar
  240. 240.
    Feser JP, Prasad AK, Advani SG (2006) Experimental characterization of in-plane permeability of gas diffusion layers. J Power Sources 162:1226–1231.  https://doi.org/10.1016/j.jpowsour.2006.07.058 CrossRefGoogle Scholar
  241. 241.
    Parnas RS, Salem AJ (1993) A comparison of the unidirectional and radial in-plane flow of fluids through woven composite reinforcements. Polym Compos 14:383–394.  https://doi.org/10.1002/pc.750140504 CrossRefGoogle Scholar
  242. 242.
    Comas-Cardona S, Cosson B, Bickerton S, Binetruy C (2014) An optically-based inverse method to measure in-plane permeability fields of fibrous reinforcements. Compos Part A Appl Sci Manuf 57:41–48CrossRefGoogle Scholar
  243. 243.
    Elbouazzaoui O, Drapier S, Henrat P (2005) An experimental assessment of the saturated transverse permeability of Non-crimped New Concept (NC2) multiaxial fabrics. J Compos Mater 39:1169–1193.  https://doi.org/10.1177/0021998305048746 CrossRefGoogle Scholar
  244. 244.
    Buntain MJ, Bickerton S (2003) Compression flow permeability measurement: a continuous technique. Compos Part A Appl Sci Manuf 34:445–457.  https://doi.org/10.1016/S1359-835X(03)00090-3 CrossRefGoogle Scholar
  245. 245.
    Weitzenbock JR, Shenoi RA, Wilson PA (1998) Measurement of three-dimensional permeability. Compos Part A Appl Sci Manuf 29:159–169.  https://doi.org/10.1016/S1359-835X(97)00049-3 CrossRefGoogle Scholar
  246. 246.
    Bréard J, Saouab A, Bouquet G (1998) Mesure de la perméabilité spatiale d’un renfort tridimensionnel pour matériaux composites à matrice polymère. Eur Phys J AP 1:269–278CrossRefGoogle Scholar
  247. 247.
    Drapier S, Pagot A, Vautrin A, Henrat P (2002) Influence of the stitching density on the transverse permeability of non-crimped new concept (NC2) multiaxial reinforcements: Measurements and predictions. Compos Sci Technol 62:1979–1991.  https://doi.org/10.1016/S0266-3538(02)00127-6 CrossRefGoogle Scholar
  248. 248.
    Pomeroy R, Grove S, Summerscales J, Wang Y, Harper A (2007) Measurement of permeability of continuous filament mat glass-fibre reinforcements by saturated radial airflow. Compos Part A Appl Sci Manuf 38:1439–1443.  https://doi.org/10.1016/j.compositesa.2006.11.011 CrossRefGoogle Scholar
  249. 249.
    Nordlund M, Michaud V (2012) Dynamic saturation curve measurement for resin flow in glass fibre reinforcement. Compos Part A Appl Sci Manuf 43:333–343CrossRefGoogle Scholar
  250. 250.
    Hou Y, Comas-Cardona S, Binetruy C, Drapier S (2013) Gas transport in fibrous media: Application to in-plane permeability measurement using transient flow. J Compos Mater 47:2237–2247.  https://doi.org/10.1177/0021998312455676 CrossRefGoogle Scholar
  251. 251.
    Drapier S, Monatte J, Elbouazzaoui O, Henrat P (2005) Characterization of transient through-thickness permeabilities of Non Crimp New Concept (NC2) multiaxial fabrics. Compos Part A Appl Sci Manuf 36:877–892.  https://doi.org/10.1016/j.compositesa.2005.01.002 CrossRefGoogle Scholar
  252. 252.
    Slade J, Pillai KM, Advani SG (2001) Investigation of unsaturated flow in woven, braided and stitched fiber mats during mold-filling in resin transfer molding. Polym Compos 22:491–505.  https://doi.org/10.1002/pc.10554 CrossRefGoogle Scholar
  253. 253.
    Puaux G, Silva L, Laure P, Vincent M, Coupez T (2010) An immersed finite element method for permeability determination of a porous media. Int J Numer Methods Fluids 00:1–24.  https://doi.org/10.1002/fld CrossRefGoogle Scholar
  254. 254.
    Silva L, Puaux G, Vincent M, Laure P (2010) A Monolithic Finite Element Approach to Compute Permeabilityatc Microscopic Scales in LCM Processes. Int J Mater Form 3:619–622CrossRefGoogle Scholar
  255. 255.
    Chevalier L, Bruchon J, Moulin N, Liotier P-J, Drapier S (2018) Accounting for local capillary e_ffects in two-phase _flows with relaxed surface tension formulation in enriched _finite elements. CR MécaniqueGoogle Scholar
  256. 256.
    Andriamananjara K, Chevalier L, Moulin N, Bruchon J, Liotier P-JJ, Drapier S. Numerical approach for modelling across scales infusion-based processing of aircraft primary structures. AIP Conf. Proc., vol. 1896, 2017.  https://doi.org/10.1063/1.5007998.
  257. 257.
    Gourichon B, Binétruy C, Krawczak P (2006) A new numerical procedure to predict dynamic void content in liquid composite molding. Compos Part A Appl Sci Manuf 37:1961–1969.  https://doi.org/10.1016/j.compositesa.2005.12.017 CrossRefGoogle Scholar
  258. 258.
    Spaid MAA, Phelan FR (1998) Modeling void formation dynamics in fibrous porous media with the lattice Boltzmann method. Compos Part A Appl Sci Manuf 29:749–755.  https://doi.org/10.1016/S1359-835X(98)00031-1 CrossRefGoogle Scholar
  259. 259.
    Park CH, Lebel A, Saouab A, Bréard J, Lee W Il. Modeling and simulation of voids and saturation in liquid composite molding processes. Compos Part A Appl Sci Manuf 2011;42:658–668.Google Scholar
  260. 260.
    Liu Y, Moulin N, Bruchon J, Liotier, PJP-J, Drapier S. Towards void formation and permeability predictions in LCM processes: A computational bifluid-solid mechanics framework dealing with capillarity and wetting issues. vol. 344. 2016.  https://doi.org/10.1016/j.crme.2016.02.004.
  261. 261.
    De Parseval Y, Pillai KM, Advani SG (1997) A simple model for the variation of permeability due to partial saturation in dual scale porous media. Transp Porous Media 27:243–264CrossRefGoogle Scholar
  262. 262.
    Tan H, Pillai KM (2012) Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding I: Isothermal flows. Compos Part A Appl Sci Manuf 43:1–13CrossRefGoogle Scholar
  263. 263.
    Pucci MF, Liotier P-J, Drapier S (2015) Capillary wicking in a fibrous reinforcement–Orthotropic issues to determine the capillary pressure components. Compos Part A Appl Sci Manuf 77:133–141CrossRefGoogle Scholar
  264. 264.
    Lawrence JM, Neacsu V, Advani SG (2009) Modeling the impact of capillary pressure and air entrapment on fiber tow saturation during resin infusion in LCM. Compos Part A Appl Sci Manuf 40:1053–1064CrossRefGoogle Scholar
  265. 265.
    Parnas RS, Salem AJ, Sadiq TAK, Wang HP, Advani SG (1994) The interaction between micro- and macro-scopic flow in {RTM} preforms. Compos Struct 27:93–107CrossRefGoogle Scholar
  266. 266.
    Lopez E, Leygue A, Abisset-Chavanne E, Comas-Cardona S, Aufrere C, Binetruy C et al (2017) Flow modeling of linear and nonlinear fluids in two scale fibrous fabrics: Advanced simulations. Int J Mater Form 10:317–328.  https://doi.org/10.1007/s12289-015-1280-5 CrossRefGoogle Scholar
  267. 267.
    Lagardère M, Park CH, Panier S, others. Permeability of natural fiber reinforcement for liquid composite molding processes. J Mater Sci 2014;49:6449–6458.Google Scholar
  268. 268.
    Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17:273CrossRefGoogle Scholar
  269. 269.
    Wehner JA, Miller B, Rebenfeld L (1987) Moisture Induced Changes in Fabric Structure as Evidenced by Air Permeability Measurements. Text Res J 57:247–256.  https://doi.org/10.1177/004051758705700501 CrossRefGoogle Scholar
  270. 270.
    Francucci G, Rodríguez ES, Vázquez A (2010) Study of saturated and unsaturated permeability in natural fiber fabrics. Compos Part A Appl Sci Manuf 41:16–21CrossRefGoogle Scholar
  271. 271.
    Potluri P, Parlak I, Ramgulam R, Sagar TV (2006) Analysis of tow deformations in textile preforms subjected to forming forces. Compos Sci Technol 66:297–305.  https://doi.org/10.1016/j.compscitech.2005.04.039 CrossRefGoogle Scholar
  272. 272.
    Bouquerel L, Moulin N, Drapier S, Boisse P, Beraud J-M (2017) Modelling and simulating the forming of new dry automated lay-up reinforcements for primary structures. AIP Conf Proc 1896.  https://doi.org/10.1063/1.5007995
  273. 273.
    Liotier P-J, Govignon Q, Swery E, Drapier S, Bickerton S. Permeability of sheared woven flax fibres reinforcements; Definition of parameters to model complex shape composites part processing by LCM. 16th Eur. Conf. Compos. Mater. ECCM 2014, 2014.Google Scholar
  274. 274.
    Fuentes CA, Ting KW, Dupont-Gillain C, Steensma M, Talma AG, Zuijderduin R et al (2016) Effect of humidity during manufacturing on the interfacial strength of non-pre-dried flax fibre/unsaturated polyester composites. Compos Part A Appl Sci Manuf 84:209–215.  https://doi.org/10.1016/j.compositesa.2016.01.023 CrossRefGoogle Scholar
  275. 275.
    Campana C, Leger R, Sonnier R, Ferry L, Ienny P (2018) Effect of post curing temperature on mechanical properties of a flax fiber reinforced epoxy composite. Compos Part A Appl Sci Manuf 107:171–179.  https://doi.org/10.1016/j.compositesa.2017.12.029 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Christophe Baley
    • 1
  • Moussa Gomina
    • 2
  • Joel Breard
    • 3
  • Alain Bourmaud
    • 1
  • Sylvain Drapier
    • 4
  • Manuela Ferreira
    • 5
  • Antoine Le Duigou
    • 1
  • Pierre Jacques Liotier
    • 4
  • Pierre Ouagne
    • 6
  • Damien Soulat
    • 5
  • Peter Davies
    • 7
    Email author
  1. 1.IRDL, UMR CNRS 6027Université de Bretagne-SudLorient CedexFrance
  2. 2.CRISMAT, UMR CNRS 6508Caen Cedex 4France
  3. 3.LOMCUMR CNRS 6294, Université du HavreLe HavreFrance
  4. 4.École des Mines de Saint-Étienne, UMR CNRS 5307, LGFUniversity of LyonSaint-Étienne cedex 2France
  5. 5.ENSAIT, GEMTEXUniversity of LilleRoubaixFrance
  6. 6.Laboratoire Génie de Production (LGP), INP-ENITUniversité de ToulouseTarbesFrance
  7. 7.IFREMER, Centre de BretagneLCSMPlouzanéFrance

Personalised recommendations