Advertisement

Similarity measures for identifying material parameters from hysteresis loops using inverse analysis

  • Charles F. Jekel
  • Gerhard Venter
  • Martin P. Venter
  • Nielen Stander
  • Raphael T. Haftka
Original Research
  • 62 Downloads

Abstract

Sum-of-square based error formulations may be difficult to implement on an inverse analysis consisting of multiple tension-compression hysteresis loops. Five alternative measures of similarity between curves are investigated as useful tools to help identify parameters from hysteresis loops with inverse analyses. A new algorithm is presented to calculate the area between curves. Four additional methods are presented from literature, which include the Partial Curve Mapping value, discrete Fréchet distance, Dynamic Time Warping, and Curve Length approach. These similarity measures are compared by solving a non-linear regression problem resembling a single load-unload cycle. The measures are then used to solve more complicated inverse analysis, where material parameters are identified for a kinematic hardening transversely anisotropic material model. The inverse analysis finds material parameters such that a non-linear FE model reproduces the behavior from five experimental hysteresis loops. Each method was shown to find useful parameters for these problems, and should be considered a viable alternative when sum-of-square based methods may be difficult to implement. It is important to consider multiple similarity measures in cases when it is impossible to obtain a perfect match.

Keywords

Inverse analysis Material parameter identification Hysteresis loops Tension-compression response Similarity measures Goodness of fit 

Notes

Funding Information

Charles F. Jekel has received the following funding for his PhD research which has supported this work: University of Florida Graduate Preeminence Award, U.S. Department of Veterans Affairs Educational Assistance, and Stellenbosch University Merritt Bursary. Nielen Stander is a senior scientist at Livermore Software Technology Corporation.

Compliance with Ethical Standards

Conflict of interests

The authors declare that there is no conflict of interest.

References

  1. 1.
    Boyce MC, Arruda EM (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73(3):504–523.  https://doi.org/10.5254/1.3547602 CrossRefGoogle Scholar
  2. 2.
    Grédiac M, Pierron F, Vautrin A (1994) The Iosipescu in-plane shear test applied to composites: a new approach based on displa- cement field processing. Compos Sci Technol 51(3):409–417.  https://doi.org/10.1016/0266-3538(94)90109-0. ISSN 0266-3538CrossRefGoogle Scholar
  3. 3.
    Grédiac M, Pierron F, Avril S, Toussaint E (2006) The virtual fields method for extracting constitutive parameters from full-field measurements: a review. Strain 42(4):233–253.  https://doi.org/10.1111/j.1475-1305.2006.tb01504.x ISSN 1475-1305CrossRefGoogle Scholar
  4. 4.
    Schnur DS, Zabaras N (1992) An inverse method for determining elastic material properties and a material interface. Int J Numer Methods Eng 33(10):2039–2057.  https://doi.org/10.1002/nme.1620331004. ISSN 1097-0207CrossRefzbMATHGoogle Scholar
  5. 5.
    Lovato G, Moret F, Le Gallo P, Cailletaud G, Pilvin P (1993) Determination of brazed joint constitutive law by inverse method. Le J de Physique IV 3(C7):C7–1135Google Scholar
  6. 6.
    Gelin J C, Ghouati O (1994) An inverse method for determining viscoplastic properties of aluminium alloys. J Mater Process Technol 45(1):435–440. ISSN 0924-0136CrossRefGoogle Scholar
  7. 7.
    Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329.  https://doi.org/10.1016/0020-7683(94)90154-6. ISSN 0020-7683MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cailletaud G, Pilvin P (1994) Identification and inverse problems related to material behaviour. Inverse Probl Eng Mech 1:79–86Google Scholar
  9. 9.
    Lederer D, Igarashi H, Kost A, Honma T (1999) On the parameter identification and application of the Jiles-Atherton hysteresis model for numerical modelling of measured characteristicsGoogle Scholar
  10. 10.
    Haddadi H, Bouvier S, Banu M, Maier C, Teodosiu C (2006) Towards an accurate description of the anisotropic behaviour of sheet metals under large plastic deformations: modelling numerical analysis and identification. Int J Plastic 22(12):2226–2271.  https://doi.org/10.1016/j.ijplas.2006.03.010. ISSN 0749-6419CrossRefzbMATHGoogle Scholar
  11. 11.
    Eggertsen P-A, Mattiasson K (2011) On the identification of kinematic hardening material parameters for accurate springback predictions. Int J Mater Forming 4(2):103–120.  https://doi.org/10.1007/s12289-010-1014-7. ISSN 1960-6214CrossRefGoogle Scholar
  12. 12.
    Harth T, Schwan S, Lehn J, Kollmann FG (2004) Identification of material parameters for inelastic constitutive models: statistical analysis and design of experiments. Int J Plastic 20(8):1403–1440.  https://doi.org/10.1016/j.ijplas.2003.11.001. ISSN 0749-6419CrossRefzbMATHGoogle Scholar
  13. 13.
    Rabahallah M, Balan T, Bouvier S, Bacroix B, Barlat F, Chung K, Teodosiu C (2009) Parameter identification of advanced plastic strain rate potentials and impact on plastic anisotropy prediction. Int J Plastic 25(3):491–512.  https://doi.org/10.1016/j.ijplas.2008.03.006. ISSN 0749-6419CrossRefzbMATHGoogle Scholar
  14. 14.
    Souto N, Andrade-Campos A, Thuillier S (2015) Material parameter identification within an integrated methodology considering anisotropy, hardening and rupture. J Mater Process Technol 220:157– 172CrossRefGoogle Scholar
  15. 15.
    Yoshida F, Urabe M, Hino R, Toropov VV (2003) Inverse approach to identification of material parameters of cyclic elasto-plasticity for component layers of a bimetallic sheet. Int J Plasticy 19(12):2149–2170.  https://doi.org/10.1016/S0749-6419(03)00063-9. ISSN 0749-6419CrossRefzbMATHGoogle Scholar
  16. 16.
    De-Carvalho R, Valente RAF, Andrade-Campos A (2010) On the objective function evaluation in parameter identification of material constitutive models - single-point or FE analysis. Int J Mater Forming 3(1):33–36.  https://doi.org/10.1007/s12289-010-0700-9. ISSN 1960-6214CrossRefGoogle Scholar
  17. 17.
    Yoshida F, Uemori T (2002) A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation. Int J Plastic 18(5):661–686.  https://doi.org/10.1016/S0749-6419(01)00050-X http://www.sciencedirect.com/science/article/pii/S074964190100050X ISSN 0749-6419CrossRefzbMATHGoogle Scholar
  18. 18.
    Kim D, Barlat F, Bouvier S, Rabahallah M, Balan T, Chung K (2007) Non-quadratic anisotropic potentials based on linear transformation of rate, plastic strain. Int J Plastic 23(8):1380–1399.  https://doi.org/10.1016/j.ijplas.2007.01.006 http://www.sciencedirect.com/science/article/pii/S0749641907000071 ISSN 0749-6419CrossRefzbMATHGoogle Scholar
  19. 19.
    Gruber M, Lebaal N, Roth S, Harb N, Sterionow P, Peyraut F (2016) Parameter identification of hardening laws for bulk metal forming using experimental and numerical approach. Int J Mater Form 9(1):21–33.  https://doi.org/10.1007/s12289-014-1196-5. ISSN 1960-6214CrossRefGoogle Scholar
  20. 20.
    ul Hassan H, Maqbool F, Güner A, Hartmaier A, Khalifa NB, Tekkaya AE (2016) Springback prediction and reduction in deep drawing under influence of unloading modulus degradation. Int J Mater Form 9 (5):619–633.  https://doi.org/10.1007/s12289-015-1248-5 ISSN 1960-6214CrossRefGoogle Scholar
  21. 21.
    Markiewicz E, Langrand B (2017) Characterisation and parameters identification of materials constitutive and damage models: from normalised direct approach to most advanced inverse problem resolution. Procedia Eng 173:33–40.  https://doi.org/10.1016/j.proeng.2016.12.016 http://www.sciencedirect.com/science/article/pii/S1877705816344071 ISSN 1877-7058CrossRefGoogle Scholar
  22. 22.
    Andrade-Campos A, De-Carvalho R, Valente RAF (2012) Novel criteria for determination of material model parameters. Int J Mech Sci 54(1):294–305.  https://doi.org/10.1016/j.ijmecsci.2011.11.010 http://www.sciencedirect.com/science/article/pii/S0020740311002451 ISSN 0020-7403CrossRefGoogle Scholar
  23. 23.
    Martins PALS, Natal Jorge RM, Ferreira AJM (2006) A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues. Strain 42(3):135–147.  https://doi.org/10.1111/j.1475-1305.2006.00257.x ISSN 1475-1305CrossRefGoogle Scholar
  24. 24.
    Bruhns OT, Anding DK (1999) On the simultaneous estimation of model parameters used in constitutive laws for inelastic material behaviour. Int J Plastic 15(12):1311–1340.  https://doi.org/10.1016/S0749-6419(99)00046-7 http://www.sciencedirect.com/science/article/pii/S0749641999000467 ISSN 0749-6419CrossRefzbMATHGoogle Scholar
  25. 25.
    Wolpert D H, Macready W G (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82.  https://doi.org/10.1109/4235.585893. ISSN 1089-778XCrossRefGoogle Scholar
  26. 26.
    Stander N, Roux W, Goel T, Eggleston T, Craig K (2015) LS-OPT ®; user’s manual - a design optimization and probabilistic analysis toolGoogle Scholar
  27. 27.
    Witowski K, Stander N (2012) Parameter identification of hysteretic models using partial curve mapping. In: 12th AIAA Aviation technology, integration, and operations (ATIO) conference and 14th AIAA/ISSMO multidisciplinary analysis and optimization conference.  https://doi.org/10.2514/6.2012-5580
  28. 28.
    Venter MP, Venter G (2016) Simple implementation of plain woven polypropylene fabric. J Indus Textiles.  https://doi.org/10.1177/1528083716665627
  29. 29.
    Frėchet MM (1906) Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo (1884-1940) 22(1):1–72CrossRefzbMATHGoogle Scholar
  30. 30.
    Eiter T, Mannila H (1994) Computing discrete Fréchet distance. Technical reportGoogle Scholar
  31. 31.
    Driemel A, Har-Peled S, Wenk C (2012) Approximating the Fréchet distance for realistic curves in near linear time. Discret Comput Geom 48(1):94–127.  https://doi.org/10.1007/s00454-012-9402-z ISSN 1432-0444CrossRefzbMATHGoogle Scholar
  32. 32.
    Bringmann K (2014) Why walking the dog takes time: Frechet distance has no strongly subquadratic algorithms unless SETH failsGoogle Scholar
  33. 33.
    Seyler SL, Kumar A, Thorpe MF, Beckstein O (2015) Path similarity analysis: a method for quantifying macromolecular pathways. PLOS Comput Biol 11 (10):1–37.  https://doi.org/10.1371/journal.pcbi.1004568 CrossRefGoogle Scholar
  34. 34.
    Alt H, Godau M (1995) Computing the Fréchet distance between two polygonal curves. Int J Comput Geom Appl 05(01n02):75–91.  https://doi.org/10.1142/S0218195995000064 CrossRefzbMATHGoogle Scholar
  35. 35.
    Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In Proceedings of the 3rd international conference on knowledge discovery and data mining, AAAIWS’94. AAAI Press, pp 359–370. http://dl.acm.org/citation.cfm?id=3000850.3000887
  36. 36.
    Petitjean F, Ketterlin A, Gançarski Pi (2011) A global averaging method for dynamic time warping, with applications to clustering. Pattern Recogn 44(3):678–693.  https://doi.org/10.1016/j.patcog.2010.09.013 http://www.sciencedirect.com/science/article/pii/S003132031000453X ISSN 0031-3203CrossRefzbMATHGoogle Scholar
  37. 37.
    Giorgino T (2009) Computing and visualizing dynamic time warping alignments in R: the dtw package. J Statist Softw 1(7):2009.  https://doi.org/10.18637/jss.v031.i07 Google Scholar
  38. 38.
    Salvador S, Chan P (2007) Toward accurate dynamic time warping in linear time and space. Intell Data Anal 11(5):561–580. http://dl.acm.org/citation.cfm?id=1367985.1367993 ISSN 1088-467XGoogle Scholar
  39. 39.
    Cao J, Lin J (2008) A study on formulation of objective functions for determining material models. Int J Mech Sci 50(2):193–204.  https://doi.org/10.1016/j.ijmecsci.2007.07.003. ISSN 0020-7403CrossRefzbMATHGoogle Scholar
  40. 40.
    Livermore Software Technology Corporation (2016) *MAT_ KINEMATIC_HARDENING_TRANSVERSELY_ANISOTROPIC. In: LS-DYNA keyword user’s manual volume ii material models, pp 635–646Google Scholar
  41. 41.
    Stander N, Craig KJ (2002) On the robustness of a simple domain reduction scheme for simulation-based optimization. Eng Comput 19(4):431–450.  https://doi.org/10.1108/02644400210430190 CrossRefzbMATHGoogle Scholar
  42. 42.
    Tormene P, Giorgino T, Quaglini S, Stefanelli M (2009) Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation. Artif Intell Med 45(1):11–34.  https://doi.org/10.1016/j.artmed.2008.11.007. ISSN 0933-3657CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Charles F. Jekel
    • 1
  • Gerhard Venter
    • 2
  • Martin P. Venter
    • 2
  • Nielen Stander
    • 3
  • Raphael T. Haftka
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Mechanical and Mechatronic EngineeringStellenbosch UniversityMatielandSouth Africa
  3. 3.Livermore Software Technology CorporationLivermoreUSA

Personalised recommendations