Advertisement

International Journal of Material Forming

, Volume 12, Issue 1, pp 69–78 | Cite as

Different experimental ways to minimize the preforming defects of multi-layered interlock dry fabric

  • A. Shanwan
  • S. AllaouiEmail author
Original Research
  • 74 Downloads

Abstract

This study presents a strategy to improve the quality of a dry fabric’s preforms. Preforming tests were realized with one and two-layers of interlock carbone fabric at different configurations. Initial results led to preforms with several defects. For one-layer preforming, a new blank holder geometry and an increase of the pressure applied on the fabric allowed to improve the quality of the preforms. On the other hand, for two-layer preforming, the insertion of a mat fabric in the interface of the two preformed layers allowed to decrease the friction and to improve the preforms quality, significantly.

Keywords

Fabrics/textiles Lamina/ply Preform Defects 

References

  1. 1.
    Allaoui S, Launay J, Soulat D, Chatel S (2008) Experimental tool of woven reinforcement forming International Journal of Material Forming, 1960-6214 (Online), Category Symposium MS12: Composites FormingGoogle Scholar
  2. 2.
    Allaoui S, Hivet G, Soulat D, Wendling A, Ouagne P, Chatel S (2014) Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement. Int J Mater Form 7(2):155–165CrossRefGoogle Scholar
  3. 3.
    Boisse P, Hamila N, Madeo A (2016) Modelling the development of defects during composite reinforcements and prepreg forming. Philos Trans R Soc A Math Phys Eng Sci 374(2071).  https://doi.org/10.1098/rsta.2015.0269
  4. 4.
    ten Thije RHW, Akkerman R, Huétink J (2007) Large deformation simulation of anisotropic material using an updated lagrangian finite element method. Comput Methods Appl Mech Eng 196(33–34):3141–3150CrossRefzbMATHGoogle Scholar
  5. 5.
    Nezami FN, Gereke T, Cherif C (2016) Analyses of interaction mechanisms during forming of multilayer carbon woven fabrics for composite applications. Compos Part A 84:406–416CrossRefGoogle Scholar
  6. 6.
    Nezami FN, Gereke T, Cherif C (2017) Active forming manipulation of composite reinforcements for the suppression of forming defects. Compos Part A 99:94–101CrossRefGoogle Scholar
  7. 7.
    Hamila N, Boisse P (2007) A meso macro three node finite element for draping of textile composite performs. Appl Compos Mater 14:235–250CrossRefGoogle Scholar
  8. 8.
    Allaoui S, Boisse P, Chatel S, Hamila N, Hivet G, Soulat D, Vidal-Salle E (2011) Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape. Compos Part A 42(6):612–622CrossRefGoogle Scholar
  9. 9.
    Soulat D, Allaoui S, Chatel S (2009) Experimental device for the performing step of the RTM process. Int J Mater Form 2(1):181–184CrossRefGoogle Scholar
  10. 10.
    Vanclooster K, Lomov SV, Verpoest I (2009) Experimental validation of forming simulations of fabric reinforced polymers using an unsymmetrical mould configuration. Compos Part A 40(4):530–539CrossRefGoogle Scholar
  11. 11.
    Chen S, McGregor OPL, Harper LT, Endruweit A, Warrior NA (2016) Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern. Compos Part A 91(1):156–167CrossRefGoogle Scholar
  12. 12.
    Lightfoot JS, Wisnom MR, Potter K (2013) Defects in woven preforms: formation mechanisms and the effects of laminate design and layup protocol. Compos Part A 51:99–107CrossRefGoogle Scholar
  13. 13.
    Liu LS, Wang P, Legrand X, Soulat D (2017) Investigation of mechanical properties of tufted composites: influence of tuft length through the thickness reinforcement. Compos Struct 172:21–228CrossRefGoogle Scholar
  14. 14.
    Bel S, Hamila N, Boisse P, Dumont F (2012) Finite element model for NCF composite reinforcement preforming: importance of inter-ply sliding. Compos Part A 43:2269–2277CrossRefGoogle Scholar
  15. 15.
    Allaoui S, Cellard C, Hivet G (2015) Effect of inter-ply sliding on the quality of multilayer interlock dry fabric preforms. Compos Part A 68:336–345CrossRefGoogle Scholar
  16. 16.
    ten Thije RHW, Akkerman R (2009) A multi-layer triangular membrane finite element for the forming simulation of laminated composites. Compos Part A 40:739–753CrossRefGoogle Scholar
  17. 17.
    Vanclooster K, Lomov SV, Verpoest I (2010) Simulation of multi-layered composites forming. Int J Mater Form 3(Suppl 1):695–698CrossRefGoogle Scholar
  18. 18.
    Chen Q, Boisse P, Park CH, Saouab A, Bréard J (2011) Intra/inter-ply shear behaviors of continuous fiber reinforced thermoplastic composites in thermoforming processes. Compos Struct 93:1692–1703CrossRefGoogle Scholar
  19. 19.
    Nahiene Hamila, Philippe Boisse, « Simulations of textile composite reinforcement draping using a new semi-discrete three node finite element”. Compos Part B, Vol 39, 999–1010, (2008)CrossRefGoogle Scholar
  20. 20.
    Allaoui S, Hivet G, Wendling A, Ouagne P, Soulat D (2012) Influence of the dry woven fabrics meso-structure on fabric/fabric contact behavior. J Compos Mater 46(6):627–639CrossRefGoogle Scholar
  21. 21.
    Launay J, Hivet G, Duong AV, Boisse P (2008) Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Compos Sci Technol 68(2):506–515CrossRefGoogle Scholar
  22. 22.
    Harrison P, Abdiwi F, Guo Z, Potluri P, Yu WR (2012) Characterising the shear–tension coupling and wrinkling behaviour of woven engineering fabrics. Compos Part A 43(6):903–914CrossRefGoogle Scholar
  23. 23.
    Hörrmann S, Adumitroaie A, Viechtbauer C, Schagerl M (2016) The effect of fiber waviness on the fatigue life of CFRP materials. Int J Fatigue 90:139–147CrossRefGoogle Scholar
  24. 24.
    Cruanes C, Shanwan A, Méo S, Allaoui S, Deffarges M-P, Lacroix F, Hivet G (2018) Effect of mesoscopic out-of-plane defect on the fatigue behavior of a GFRP. Mech Mater 117:214–224CrossRefGoogle Scholar
  25. 25.
    Capelle E, Ouagne P, Soulat D, Duriatti D (2014) Complex shape forming of flax woven fabrics: design of specific blank-holder shapes to prevent defects. Compos Part B 62:29–36CrossRefGoogle Scholar
  26. 26.
    Hivet G, Allaoui S, Cam BT, Ouagne P, Soulat D (2012) Design and potentiality of an apparatus for measuring yarn/yarn and fabric/fabric friction. Exp Mech 52(8):1123–1136CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Orléans, University of Tours, INSA CVL, LaMé, EA 7494OrléansFrance

Personalised recommendations