Advertisement

Prediction of strain distribution and four, six, or eight ears depending on single-crystal orientation using a new single crystal criterion

  • Nitin Chandola
  • Oana CazacuEmail author
  • Benoit Revil-Baudard
Original Research
  • 14 Downloads

Abstract

Significant progress has been achieved on modeling the influence of plastic anisotropy on forming of polycrystalline metal sheets. In contrast, the effect of crystal orientation on forming of single-crystal sheets has been largely unexplored. In this paper, using a recently developed single crystal criterion, it is shown that the single-crystal orientation has a very strong influence on forming. Results of F.E. simulations of cup drawing and hole expansion are reported. The same set of values of the anisotropy coefficients, which correspond to Al single crystal (with 5% Cu) is used in all simulations. It is predicted that for the {100}〈001〉 orientation four ears develop whereas for the \( \left\{111\right\}\left\langle 1\overline{1}0\right\rangle \) and \( \left\{122\right\}\left\langle 1\overline{1}0\right\rangle \) crystal orientations six, and eight ears form. Moreover, correlations between the location of the ears and the variation of the Lankford coefficients in the plane of the respective single-crystal sheets are established. F.E. analysis of hole expansion also show a strong influence of crystal orientation on the distribution of thickness strains and strain localization.

Keywords

Single-crystal Earing Hole expansion Anisotropy;forming 

Notes

Compliance with ethical standards

The authors declare that they comply with the ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Barlat F, Lege DJ, Brem JC (1991) A six-component yield function for anisotropic materials. Int J Plast 7(7):693–712CrossRefGoogle Scholar
  2. 2.
    Barlat F, Aretz H, Yoon J, Karabin M, Brem J, Dick R (2005) Linear transfomation-based anisotropic yield functions. Int J Plast 21(5):1009–1039CrossRefzbMATHGoogle Scholar
  3. 3.
    Barlat F, Yoon JW, Cazacu O (2007) On linear transformations of stress tensors for the description of plastic anisotropy. Int J Plast 23(5):876–896CrossRefzbMATHGoogle Scholar
  4. 4.
    Cazacu O (2018) New yield criteria for isotropic and textured metallic materials. Int J Solids Struct 139-140.  https://doi.org/10.1016/j.ijsolstr.2018.01.036
  5. 5.
    Cazacu O, Barlat F (2001) Generalization of Drucker’s yield criterion to Orthotropy. Math Mech Solids 6(6):613–630.  https://doi.org/10.1177/108128650100600603 CrossRefzbMATHGoogle Scholar
  6. 6.
    Cazacu O, Barlat F (2003) Application of the theory of representation to describe yielding of anisotropic aluminum alloys. Int J Eng Sci 41(12):1367–1385CrossRefGoogle Scholar
  7. 7.
    Cazacu O, Barlat F (2004) A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals. Int J Plast 20(11):2027–2045CrossRefzbMATHGoogle Scholar
  8. 8.
    Cazacu O, Plunkett B, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plast 22(7):1171–1194CrossRefzbMATHGoogle Scholar
  9. 9.
    Cazacu O, Revil-Baudard, B., Chandola, N. (2019) Plasticity-Damage Couplings: From Single Crystal to Polycrystalline Materials, ISBN 978–3–319-92921-7, SpringerGoogle Scholar
  10. 10.
    Barlat F, Richmond O (1987) Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured fcc polycrystalline sheets. Mater Sci Eng 95:15–29CrossRefGoogle Scholar
  11. 11.
    Banabic D, Barlat F, Cazacu O, Kuwabara T (2010) Advances in anisotropy and formability. Int J Mater Form 3(3):165–189CrossRefGoogle Scholar
  12. 12.
    Yoon JH, Cazacu O, Yoon JW, Dick RE (2010) Earing predictions for strongly textured aluminum sheets. Int J Mech Sci 52(12):1563–1578CrossRefGoogle Scholar
  13. 13.
    Banabic, D., 2010 Sheet metal forming processes, ISBN 978–3–540-88113-1, SpringerGoogle Scholar
  14. 14.
    Lege DJ, Barlat F, Brem JC (1989) Characterization and modeling of the mechanical behavior and formability of a 2008-T4 sheet sample. Int J Mech Sci 31(7):549–563CrossRefGoogle Scholar
  15. 15.
    Yoon JW, Barlat F, Chung K, Pourboghrat F, Yang DY (2000) Earing predictions based on asymmetric nonquadratic yield function. Int J Plast 16(9):1075–1104CrossRefzbMATHGoogle Scholar
  16. 16.
    Kuwabara T, Mori T, Asano M, Hakoyama T, Barlat F (2017) Material modeling of 6016-O and 6016-T4 aluminum alloy sheets and application to hole expansion forming simulation. Int J Plast 93:164–186CrossRefGoogle Scholar
  17. 17.
    Barros PD, Simões VM, Neto D.M., Oliveira, MC, Alves, JL, Menezes, LF ( 2013) On the influence of the yield parameters identification procedure in cylindrical cups earing prediction. NUMISHEET 2014 AIP Conf Proc 1567, 512–515Google Scholar
  18. 18.
    Barros PD, Neto DM, Alves JL, Oliveira MC, Menezes LF (2015) DD3IMP, 3D fully implicit finite element solver: implementation of CB2001 yield criterion. Rom J Tech Sci–Appl Mech 60:105–136MathSciNetGoogle Scholar
  19. 19.
    Yoon JI, Jung J, Lee HH, Kim GS, Kim HS (2016) Factors governing hole expansion ratio of steel sheets with smooth sheared edge. Met Mater Int 22(6):1009–1014CrossRefGoogle Scholar
  20. 20.
    ISO-16630 2017 Metallic materials - Sheet and strip - Hole expanding testGoogle Scholar
  21. 21.
    Becker R, Smelser RE, Panchanadeeswaran S (1993) Simulations of earing in aluminum single crystals and polycrystals. Model Simul Mater Sci Eng 1(2):203–224CrossRefGoogle Scholar
  22. 22.
    Balasubramanian S, Anand L (1996) Single crystal and polycrystal elasto-viscoplasticity: application to earing in cup drawing of FCC materials. Comput Mech 17(4):209–225CrossRefzbMATHGoogle Scholar
  23. 23.
    Tucker GE (1961) Texture and earing in deep drawing of aluminium. Acta Metall 9(4):275–286CrossRefGoogle Scholar
  24. 24.
    Cazacu O, Revil-Baudard B, Chandola N (2017) An yield criterion for cubic single crystals. Int J Solids Struct 151.  https://doi.org/10.1016/j.ijsolstr.2017.04.006
  25. 25.
    ABAQUS (2013) User’s Manual for Version v. 6.13, vol. I–V. Dassault Systemes Simulia Corp, ProvidenceGoogle Scholar
  26. 26.
    Karnop R, Sachs G (1928) Festigkeitseigenschaften von Kristallen einer veredelbaren Aluminiumlegierung. Z Für Phys 49(7-8):480–497CrossRefzbMATHGoogle Scholar
  27. 27.
    Gotoh M, Ishise F (1978) A finite element analysis of rigid-plastic deformation of the flange in a deep-drawing process based on a fourth-degree yield function. Int J Mech Sci 20(7):423–435CrossRefzbMATHGoogle Scholar
  28. 28.
    Cazacu O, Chandola N, Revil-Baudard B (2017) Analytical expressions for the yield stress and Lankford coefficients of polycrystalline sheets based on a new single crystal model. Int J Mater Form.  https://doi.org/10.1007/s12289-017-1366-3
  29. 29.
    Comstock RJ, Scherrer DK, Adamczyk RD (2006) Hole expansion in a variety of sheet steels. J Mater Eng Perform 15(6):675–683CrossRefGoogle Scholar
  30. 30.
    Hashimoto K, Kuwabara T, Iizuka E, Yoon JW (2010) Hole expansion simulation of high strength steel sheet. Int J Mater Form 3(S1):259–262CrossRefGoogle Scholar
  31. 31.
    Kuwabara T, Hakoyama T, Maeda T, Sekiguchi C, (2018) Numisheet 2018 Benchmark-1: hole expansion of a high strength steel sheet, Numisheet 2018, July 30-Aug 3, 2018, Tokyo, JapanGoogle Scholar
  32. 32.
    Stanton M., Bhattacharya R, Dargue I, Aylmore R, and Williams , (2011) Hole expansion of aluminum alloys for the automotive industry. The 14th international ESAFORM conference on material forming AIP Conf. Proc, 1353: 1488–1493Google Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of Florida, REEFShalimarUSA

Personalised recommendations