Advertisement

MYD88 and CXCR4 Mutation Profiling in Lymphoplasmacytic Lymphoma/Waldenstrom’s Macroglobulinaemia

  • Sushant Vinarkar
  • Neeraj AroraEmail author
  • Sourav Sarma Chowdhury
  • Kallol Saha
  • Biswajoy Pal
  • Mayur Parihar
  • Vivek S. Radhakrishnan
  • Anupam Chakrapani
  • Shilpa Bhartia
  • Saurabh Bhave
  • Mammen Chandy
  • Reena Nair
  • Deepak Kumar Mishra
Original Article
  • 23 Downloads

Abstract

Recurrent mutations affecting MYD88 and CXCR4 gene nowadays form the basis for the diagnosis, risk stratification and use of inhibitors targeting these signalling pathways in LPL/WM which are rare B cell neoplasms. MYD88 L265P mutation analysis was performed on 33 cases of LPL/WM by AS-PCR (positivity-84.8%, n = 28/33) and by Sanger sequencing (positivity-39.3%, n = 13/33). We had only two cases with CXCR4 non-sense (NS) mutation (p.S338*) using Sanger sequencing. MYD88 (L265P) mutation detection by AS-PCR can form reliable biomarker for the diagnosis of LPL/WM in molecular labs. Although the cohort is small, still the CXCR4 mutation frequency in our study is low as compared to the published literature.

Keywords

MYD88 CXCR4 LPL/WM Lymphoplasmacytic lymphoma Waldenstrom’s macroglobulinaemia 

Notes

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

This study was approved by the Ethics Committee and Institutional Review Board (EC/TMC/83/16) of the Tata Medical Center, Kolkata, India.

References

  1. 1.
    Stein HM-HH, Muller-Hermelink HK, Montserrat E, Catovsky D, Campo E, Harris NL, Stein H (2008) Chronic lymphocytic leukemia/small lymphocytic lymphoma. In: Swerdlow S, Campo E, Harris NL et al (eds) International Agency for Research on Cancer. WHO classification of tumours of haematopoietic and lymphoid tissue, 4th edn. World Health Organization, Geneva, pp 180–182Google Scholar
  2. 2.
    Rossi D (2014) Role of MYD88 in lymphoplasmacytic lymphoma diagnosis and pathogenesis. ASH Educ Program Book 2014(1):113–118Google Scholar
  3. 3.
    Oza A, Rajkumar SV (2015) Waldenstrom macroglobulinemia: prognosis and management. Blood Cancer J 5(3):e394CrossRefGoogle Scholar
  4. 4.
    Ondrejka SL, Lin JJ, Warden DW, Durkin L, Cook JR, Hsi ED (2013) MYD88 L265P somatic mutation: its usefulness in the differential diagnosis of bone marrow involvement by B-cell lymphoproliferative disorders. Am J Clin Pathol 140(3):387–394CrossRefGoogle Scholar
  5. 5.
    Naderi N, Yang DT (2013) Lymphoplasmacytic lymphoma and Waldenström macroglobulinemia. Arch Pathol Lab Med 137(4):580–585CrossRefGoogle Scholar
  6. 6.
    Gertz MA (2015) Waldenström macroglobulinemia: 2015 update on diagnosis, risk stratification, and management. Am J Hematol 90(4):346–354CrossRefGoogle Scholar
  7. 7.
    Nagao T, Oshikawa G, Ishida S, Akiyama H, Umezawa Y, Nogami A et al (2015) A novel MYD88 mutation, L265RPP, in Waldenström macroglobulinemia activates the NF-κB pathway to upregulate Bcl-xL expression and enhances cell survival. Blood Cancer J 5(5):e314CrossRefGoogle Scholar
  8. 8.
    Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y et al (2012) MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med 367(9):826–833CrossRefGoogle Scholar
  9. 9.
    Yan Q, Huang Y, Watkins AJ, Kocialkowski S, Zeng N, Hamoudi RA et al (2012) BCR and TLR signaling pathways are recurrently targeted by genetic changes in splenic marginal zone lymphomas. Haematologica 97(4):595–598CrossRefGoogle Scholar
  10. 10.
    Poulain S, Roumier C, Decambron A et al (2013) MYD88 L265P mutation in Waldenstrom macroglobulinemia. Blood 121(22):4504–4511CrossRefGoogle Scholar
  11. 11.
    Jiménez C, Sebastián E, Chillón MC et al (2013) MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenstrom’s macroglobulinemia. Leukemia 27(8):1722–1728CrossRefGoogle Scholar
  12. 12.
    Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y et al (2014) The genomic landscape of Waldenström macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood 123(11):1637–1646CrossRefGoogle Scholar
  13. 13.
    Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR (2014) Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenström macroglobulinemia. Blood 123(18):2791–2796CrossRefGoogle Scholar
  14. 14.
    García-Sanz R (2016) WM, MYD88, and CXCR4: following the thread. Blood 128(6):746–748CrossRefGoogle Scholar
  15. 15.
    Hunter ZR, Xu L, Yang G, Tsakmaklis N, Vos JM, Liu X et al (2016) Transcriptome sequencing reveals a profile that corresponds to genomic variants in Waldenström macroglobulinemia. Blood 128(6):827–838CrossRefGoogle Scholar
  16. 16.
    Varettoni M, Arcaini L, Zibellini S, Boveri E, Rattotti S, Riboni R et al (2013) Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenström’s macroglobulinemia and related lymphoid neoplasms. Blood 121(13):2522–2528CrossRefGoogle Scholar
  17. 17.
    Deshpande P, Mascarenhas R, Subramanian PG, Tembhare P, Bagal B, Gujral S et al (2013) MYD88 negative Waldenstrom macroglobulinemia has distinct clinical and biological features as compared to its MYD88 mutant counterpart. Blood 122(21):4299Google Scholar
  18. 18.
    Hunter ZR, Yang G, Xu L, Liu X, Castillo JJ, Treon SP (2017) Genomics, signaling, and treatment of Waldenström macroglobulinemia. J Clin Oncol 35(9):994–1001CrossRefGoogle Scholar
  19. 19.
    Tsiatis AC, Norris-Kirby A, Rich RG, Hafez MJ, Gocke CD, Eshleman JR et al (2010) Comparison of sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS mutations. J Mol Diagn JMD 12(4):425–432CrossRefGoogle Scholar
  20. 20.
    Martinez-Lopez A, Curiel-Olmo S, Mollejo M, Cereceda L, Martinez N, Montes-Moreno S et al (2015) MYD88 (L265P) somatic mutation in marginal zone B-cell lymphoma. Am J Surg Pathol 39(5):644–651CrossRefGoogle Scholar
  21. 21.
    Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F et al (2003) Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet 34(1):70–74CrossRefGoogle Scholar
  22. 22.
    Liu Q, Chen H, Ojode T, Gao X, Anaya-O’Brien S, Turner NA et al (2012) WHIM syndrome caused by a single amino acid substitution in the carboxy-tail of chemokine receptor CXCR4. Blood 120(1):181–189CrossRefGoogle Scholar
  23. 23.
    Liu Q, Pan C, Lopez L, Gao J, Velez D, Anaya-O’Brien S et al (2016) WHIM syndrome caused by Waldenström’s macroglobulinemia-associated mutation CXCR4L329fs. J Clin Immunol 36(4):397–405CrossRefGoogle Scholar

Copyright information

© Indian Society of Hematology and Blood Transfusion 2018

Authors and Affiliations

  • Sushant Vinarkar
    • 1
  • Neeraj Arora
    • 1
    Email author
  • Sourav Sarma Chowdhury
    • 1
  • Kallol Saha
    • 1
  • Biswajoy Pal
    • 1
  • Mayur Parihar
    • 2
  • Vivek S. Radhakrishnan
    • 3
  • Anupam Chakrapani
    • 4
  • Shilpa Bhartia
    • 4
  • Saurabh Bhave
    • 3
  • Mammen Chandy
    • 3
  • Reena Nair
    • 3
  • Deepak Kumar Mishra
    • 1
  1. 1.Department of Laboratory Haematology and Molecular GeneticsTata Medical CenterKolkataIndia
  2. 2.Department of Laboratory Haematology and CytogeneticsTata Medical CenterKolkataIndia
  3. 3.Department of Clinical HaematologyTata Medical CenterKolkataIndia
  4. 4.Apollo Gleneagles HospitalKolkataIndia

Personalised recommendations