A Comparison of Fresenius Com.Tec Cell and Spectra Optia Cell Separators for Autologous and Allogeneic Stem Cell Collections: Single Center Experience

  • Serife SolmazEmail author
  • Selda Kahraman
  • Omur Gokmen Sevindik
  • Celal Acar
  • Munire Turkyilmaz
  • Inci Alacacioglu
  • Ozden Piskin
  • Mehmet Ali Ozcan
  • Hayri Guner Ozsan
  • Bulent Undar
  • Fatih Demirkan
Original Article


Peripheral blood is the prefered source for hematopoietic stem cells for hematopoietic stem cell transplantation. The efficiency of peripheral blood stem cell (PBSC) collection can vary among devices. In this study we aimed to compare feasibility and effectivity of apheresis procedures of the different systems. Two apheresis systems [Com.Tec (Fresenius Healthcare) and Spectra Optia (Caridian BCT)] were used in our center for the collection of PBSCs for autologous and allogeneic transplantation. We retrospectively analysed 190 apheresis procedures performed in healthy donors and patients between June 2012 and November 2014 in Department of Hematology, Dokuz Eylul University. PBSCS were collected by Fresenius cell separator (64 procedure) or Spectra Optia cell separator (126 procedure). Mobilization treatments were G-CSF (26.8%), cyclophosphamide plus G-CSF (48.4%), prelixafor plus G-CSF (14.7%), ESHAP (10%) and others. Patient and donor characteristics (age, weight, volume processed, disease, mobilization regimes) were similar in Fresenius and Spectra Optia apheresis groups. Altough both collected PBSCs efficiently, the amount of CD34+ cell in product collected by Spectra Optia device was significantly higher (p < 0.05) and product volume was lower than Fresenius Com.Tec significantly (p < 0.05). “CD34+ collection efficiency” with Spectra Optia was significantly higher than Fresenius Com.Tec (CE2: 87%, 70%, p = 0.033) regarding all procedures. High collection efficiency and low product volume may be a significant characteristic of Spectra Optia device (mean 187 mL, product CD34+ cell: 1576 µL).


Apheresis Peripheral blood stem cell Autologous transplantation Allogeneic transplantation Blood cell seperators 



Professional medical writing support and editor assistance were not supported by the company.

Compliance with Ethical Standards

Conflict of interest

The author did not receive financial compensation for authoring the manuscript.


  1. 1.
    Grathwohl A, Baldomero H, Schmid O, Horisberger B, Bargetzi M, Urbano-Ispizua A (2005) Change in stem cell source for hematopoietic stem cell transplantation (HSCT) in Europe: a report of the EBMT activity survey 2003. Bone Marrow Transpl 36:575–590. CrossRefGoogle Scholar
  2. 2.
    Stem Cell Trialists Collaborative Group (2005) Allogeneic peripheral blood stem cell compared with bone marrow transplantation in the management of hematologic malignancies: an individual patient data meta-analysis of nine randomized trials. J Clin Oncol 23:5074–5087. CrossRefGoogle Scholar
  3. 3.
    Sohn SK, Kim JG, Baek JH, Lee KB (2004) Diverse clinical application using advantages of allogeneic peripheral blood stem cell transplantation. Int J Hematol 79:457–461. CrossRefPubMedGoogle Scholar
  4. 4.
    Altuntaş F, Koçyigit I, Ozturk A, Kaynar L, Oztekin M, Solmaz M, Eser B, Cetin M, Unal A (2007) Comparison of the Fenwal Amicus and Fresenius Com.Tec cell separators for autologous peripheral blood progenitor cell collection. Transfus Apher Sci 36:159–167. CrossRefPubMedGoogle Scholar
  5. 5.
    Dihenescikova VR, Mistrik M, Martina J, Zwiewka M, Bizikova I, Batorova A (2015) Collection of peripheral hematopoietic stemprogenitor cells. Bratis Lek Listy 116:9–13. CrossRefGoogle Scholar
  6. 6.
    Adorno G, Del Proposto G, Palombi F, Bruno A, Ballatore G, Postorino M, Tednas A, Del Poeta G, Isacchi G, Amadori S (2004) Collection of peripheral progenitor cells: a comparison between Amicus and Cobe-Spectra blood cell separators. Transfus Apher Sci 30:131–136. CrossRefPubMedGoogle Scholar
  7. 7.
    Bachier C, Potter J, Potter G, Sugay R, Shaughnessy P, Chan K, Jude V, Madden R, LeMaistre C (2012) High white blood cell concentration in the peripheral blood stem cell product can induse seizures during infusion of autologous peripheral blood stem cells. Am Soc Blood Marrow Transpl 18:1055–1060. CrossRefGoogle Scholar
  8. 8.
    Ozkan MC, Sahin F, Saydam G (2015) Peripheral blood stem cell mobilization from healthy donors. Transfus Apher Sci 53:13–16. CrossRefPubMedGoogle Scholar
  9. 9.
    Neyrinck M, Virielink H (2015) Calculations in apheresis. J Clin Apher 30:38–42. CrossRefPubMedGoogle Scholar
  10. 10.
    Kim SR, Choung HK, Kim DW, Sung KW, Kang ES (2011) Evaluation of a new cell separator for collection of peripheral blood CD34 + progenitor cells in pediatric patients. Transfusion 51:306–312. CrossRefPubMedGoogle Scholar
  11. 11.
    Bambi F, Faulkner LB, Azzari C, Gelli AM, Tamburini A, Tintori V, Lippi AA, Tucci F, Bernini G, Genovese F (1998) Pediatric peripheral blood progenitor cell collection: haemonetics MSC3P versus COBE Spectra versus Fresenius AS104. Transfusion 38:70–74CrossRefGoogle Scholar
  12. 12.
    Flommersfeld S, Backchoul T, Bein G, Wachtel A, Loechelt C, Sachs UJ (2013) A single center comparison between three different apheresis systems for autologous and allogenei stem cell collection. Transfus Apher Sci 49:428–433. CrossRefPubMedGoogle Scholar
  13. 13.
    Brauninger S, Bialleck H, Thorausch K, Felt T, Seifried E, Bonig H (2012) Allogeneic donor peripheral blood “stem cell” apheresis: prospective comparison of two apheresis systems. Transfusion 52:1137–1145. CrossRefPubMedGoogle Scholar
  14. 14.
    Brauninger S, Bialleck H, Thorausch K, Felt T, Seifried E, Bonig H (2011) Mobilized allogeneic peripheral stem/progenitor cell apheresis with Spectra Optia v. 5.0, a novel, automatic interface—controlled apheresis system: results from the first feasibility trial. Vox Sang 101:237–246. CrossRefPubMedGoogle Scholar
  15. 15.
    Wu F, Heng K, Salleh RB, Soh TG, Lee J et al (2012) Comparing peripheral blood stem cell collection using the COBE Spectra, Haemonetics MCS and Amicus. Trans Apher Sci 47:345–350. CrossRefGoogle Scholar
  16. 16.
    Basquiera AL, Abichain P, Damonte JC et al (2006) The number of CD34 (+) cells in peripheral blood as a predictor of the CD34+ yield in patients going to autologus stem cell transplantation. J. Clin Apher 21:92–95. CrossRefPubMedGoogle Scholar
  17. 17.
    Mohle R, Murea S, Pforsich M et al (1996) Estimated of the progenitor cell yield in a Leucapheresis product by previous measurement of CD34+ cell in the peripheral blood. Vox Sang 71:90–96CrossRefGoogle Scholar
  18. 18.
    Fante CD, Perotti C, Viarengo G, Bellotti L, Parisi C, Marchesi A et al (2006) Clinical impact of a new automated system employed for perpheral blood stem cell collection. J. Clin Apher 21:227–232. CrossRefPubMedGoogle Scholar
  19. 19.
    Ford C, Chan K, Reilly W, Peterson F (2003) An evaluation of predictive factors for CD34 cell harvest yields from patients mobilized with cheomatherapy and growth factors. Transfusion 43:622–625. CrossRefPubMedGoogle Scholar
  20. 20.
    Schots R, Van Riet I, Damiaens S, Flament J, Lacor P, Staelens Y et al (1996) The absolute number of circulating CD34 cells predicts the number of hematopoetic stem cells than can be predict by apheresis. Bone Marrow Transpl 17:509–515Google Scholar

Copyright information

© Indian Society of Hematology and Blood Transfusion 2018

Authors and Affiliations

  • Serife Solmaz
    • 1
    Email author
  • Selda Kahraman
    • 2
  • Omur Gokmen Sevindik
    • 3
  • Celal Acar
    • 1
  • Munire Turkyilmaz
    • 4
  • Inci Alacacioglu
    • 4
  • Ozden Piskin
    • 4
  • Mehmet Ali Ozcan
    • 4
  • Hayri Guner Ozsan
    • 4
  • Bulent Undar
    • 4
  • Fatih Demirkan
    • 4
  1. 1.Department of HematologyBozyaka Teaching and Research HospitalIzmirTurkey
  2. 2.Department of HematologyMedical Park HospitalIzmirTurkey
  3. 3.Department of HematologyFırat University Faculty of MedicineIzmirTurkey
  4. 4.Department of HematologyDokuz Eylul University Faculty of MedicineIzmirTurkey

Personalised recommendations