Advertisement

Breast Cancer

, Volume 26, Issue 1, pp 113–124 | Cite as

Histogram analysis of quantitative pharmacokinetic parameters on DCE-MRI: correlations with prognostic factors and molecular subtypes in breast cancer

  • Ken Nagasaka
  • Hiroko Satake
  • Satoko Ishigaki
  • Hisashi Kawai
  • Shinji Naganawa
Original Article
  • 102 Downloads

Abstract

Background

Breast cancer heterogeneity influences poor prognoses thorough therapy resistance. This study quantitatively evaluated intratumoral heterogeneity through a histogram analysis of dynamic contrast-enhanced MRI (DCE-MRI) pharmacokinetic parameters, and determined correlations with prognostic factors and molecular subtypes.

Methods

We retrospectively investigated 101 invasive ductal breast cancers from 99 women who underwent preoperative DCE-MRI between July 2012 and November 2014. Pharmacokinetic parameters (Ktrans, kep, and ve) were obtained by the Tofts model. For each parameter, the mean, standard deviation, coefficient of variation, skewness, and kurtosis values of tumor were calculated, and prognostic factors and subtypes associations were assessed.

Results

The mean of ve was lower in cancers with high Ki-67 than in cancers with low Ki-67 (P = 0.002). The coefficient of variation of ve was higher in cancers with estrogen receptor negativity than in cancers with estrogen receptor positivity (P < 0.001). The coefficient of variation of ve was also higher in cancers with high Ki-67 than in cancers with low Ki-67 (P < 0.001). The skewness of ve was higher in cancers with high nuclear grade than in cancers with low nuclear grade (P = 0.006). Triple-negative cancers showed higher ve coefficient of variation than did those with luminal A (P < 0.001) and B (P = 0.006).

Conclusions

Various ve parameters correlated with breast cancer prognostic factors and molecular subtypes.

Keywords

Brest cancer Dynamic contrast-enhanced MRI Histogram analysis Pharmacokinetic modeling 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Uzzan B, Nicolas P, Cucherat M, Perret GY. Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res. 2004;64:2941–55.CrossRefGoogle Scholar
  2. 2.
    Goede V, Fleckenstein G, Dietrich M, Osmers RG, Kuhn W, Augustin HG. Prognostic value of angiogenesis in mammary tumors. Anticancer Res. 1998;18:2199–202.Google Scholar
  3. 3.
    Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred EN, Moore DH, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst. 1992;84:1875–87.CrossRefGoogle Scholar
  4. 4.
    Cheng Z, Wu Z, Shi G, Yi Z, Xie M, Zeng W, et al. Discrimination between benign and malignant breast lesions using volumetric quantitative dynamic contrast-enhanced MR imaging. Eur Radiol. 2017.  https://doi.org/10.1007/s00330-017-5050-2.Google Scholar
  5. 5.
    El Khouli RH, Macura KJ, Kamel IR, Jacobs MA, Bluemke DA. 3-T dynamic contrast-enhanced MRI of the breast: pharmacokinetic parameters versus conventional kinetic curve analysis. AJR Am J Roentgenol. 2011;197:1498–505.CrossRefGoogle Scholar
  6. 6.
    Yi B, Kang DK, Yoon D, Jung YS, Kim KS, Yim H, et al. Is there any correlation between model-based perfusion parameters and model-free parameters of time-signal intensity curve on dynamic contrast enhanced MRI in breast cancer patients? Eur Radiol. 2014;24:1089–96.CrossRefGoogle Scholar
  7. 7.
    Koo HR, Cho N, Song IC, Kim H, Chang JM, Yi A, et al. Correlation of perfusion parameters on dynamic contrast-enhanced MRI with prognostic factors and subtypes of breast cancers. J Magn Reson Imaging. 2012;36:145–51.CrossRefGoogle Scholar
  8. 8.
    Li SP, Padhani AR, Taylor NJ, Beresford MJ, Ah-See ML, Stirling JJ, et al. Vascular characterization of triple negative breast carcinomas using dynamic MRI. Eur Radiol. 2011;21:1364–73.CrossRefGoogle Scholar
  9. 9.
    Drisis S, Metens T, Ignatiadis M, Stathopoulos K, Chao SL, Lemort M. Quantitative DCE-MRI for prediction of pathological complete response following neoadjuvant treatment for locally advanced breast cancer: the impact of breast cancer subtypes on the diagnostic accuracy. Eur Radiol. 2016;26:1474–84.CrossRefGoogle Scholar
  10. 10.
    Aleskandarany MA, Vandenberghe ME, Marchiò C, Ellis IO, Sapino A, Rakha EA. Tumour heterogeneity of breast cancer: from morphology to personalised medicine. Pathobiology. 2018;85:23–34.CrossRefGoogle Scholar
  11. 11.
    Heindl A, Sestak I, Naidoo K, Cuzick J, Dowsett M, Yuan Y. Relevance of spatial heterogeneity of immune infiltration for predicting risk of recurrence after endocrine therapy of ER + breast cancer. J Natl Cancer Inst. 2018;110:166–75.CrossRefGoogle Scholar
  12. 12.
    Shin Y, Kim H, Han S, Won J, Jeong HE, Lee ES, et al. Extracellular matrix heterogeneity regulates three-dimensional morphologies of breast adenocarcinoma cell invasion. Adv Healthc Mater. 2013;2:790–4.CrossRefGoogle Scholar
  13. 13.
    Choi Y, Kim SH, Youn IK, Kang BJ, Park WC, Lee A. Rim sign and histogram analysis of apparent diffusion coefficient values on diffusion-weighted MRI in triple-negative breast cancer: comparison with ER-positive subtype. PLoS One. 2017;12:e0177903.CrossRefGoogle Scholar
  14. 14.
    Kim YJ, Kin SH, Lee AW, Jin MS, Kang BJ, Song BJ. Histogram analysis of apparent diffusion coefficients after neoadjuvant chemotherapy in breast cancer. Jpn J Radiol. 2016;34:657–66.CrossRefGoogle Scholar
  15. 15.
    Kim JH, Ko ES, Lim Y, Lee KS, Han BK, Ko EY, et al. Breast cancer heterogeneity: MR imaging texture analysis and survival outcomes. Radiology. 2017;282:665–75.CrossRefGoogle Scholar
  16. 16.
    Li Z, Ai T, Hu Y, Yan X, Nickel MD, Xu X, et al. Application of whole-lesion histogram analysis of pharmacokinetic parameters in dynamic contrast-enhanced MRI of breast lesions with the CAIPIRINHA-Dixon-TWIST-VIBE technique. J Magn Reson Imaging. 2018;47:91–6.CrossRefGoogle Scholar
  17. 17.
    Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med. 1991;17:357–67.CrossRefGoogle Scholar
  18. 18.
    Shekhar MP, Werdell J, Santner SJ, Pauley RJ, Tait L. Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: implications for tumor development and progression. Cancer Res. 2001;61:1320–6.Google Scholar
  19. 19.
    Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48.CrossRefGoogle Scholar
  20. 20.
    Yim H, Kang DK, Jung YS, Jeon GS, Kim TH. Analysis of kinetic curve and model-based perfusion parameters on dynamic contrast enhances MRI in breast cancer patients: correlations with dominant stroma type. Magn Reson Imaging. 2016;34:60–5.CrossRefGoogle Scholar
  21. 21.
    Uematsu T, Kasami M, Yuen S. Triple-negative breast cancer: correlation between MR imaging and pathologic findings. Radiology. 2009;250:638–47.CrossRefGoogle Scholar
  22. 22.
    Sung JS, Jochelson MS, Brennan S, Joo S, Wen YH, Moskowitz C, et al. MR imaging features of triple-negative breast cancers. Breast J. 2013;19:643–9.CrossRefGoogle Scholar
  23. 23.
    Cho N. Molecular subtypes and imaging phenotypes of breast cancer. Ultrasonography. 2016;35:281–8.CrossRefGoogle Scholar
  24. 24.
    Youk JH, Son EJ, Chung J, Kim JA, Kim EK. Triple-negative invasive breast cancer on dynamic contrast-enhanced and diffusion-weighted MR imaging: comparison with other breast cancer subtypes. Eur Radiol. 2012;22:1724–34.CrossRefGoogle Scholar
  25. 25.
    Richard R, Thomassin I, Chapellier M, Scemama A, de Cremoux P, Varna M, et al. Diffusion-weighted MRI in pretreatment prediction of response to neoadjuvant chemotherapy in patients with breast cancer. Eur Radiol. 2013;23:2420–31.CrossRefGoogle Scholar
  26. 26.
    An YS, Kang DK, Jung YS, Han S, Kim TH. Tumor metabolism and perfusion ratio assessed by 18F-FDG PET/CT and DCE-MRI in breast cancer patients: correlation with tumor subtype and histologic prognostic factors. Eur J Radiol. 2015;84:1365–70.CrossRefGoogle Scholar
  27. 27.
    Kim JY, Kim SH, Kim YJ, Kang BJ, An YY, Lee AW, et al. Enhancement parameters on dynamic contrast enhanced breast MRI: do they correlate with prognostic factors and subtypes of breast cancers? Magn Reson Imaging. 2015;33:72–80.CrossRefGoogle Scholar
  28. 28.
    Kim SH, Lee HS, Kang BJ, Song BJ, Kim HB, Lee H, et al. Dynamic contrast-enhanced mri perfusion parameters as imaging biomarkers of angiogenesis. PLoS One. 2016;11:e0168632.CrossRefGoogle Scholar
  29. 29.
    Lee HS, Kim SH, Kang BJ, Baek JE, Song BJ. Perfusion parameters in dynamic contrast-enhanced MRI and apparent diffusion coefficient value in diffusion-weighted mri: association with prognostic factors in breast cancer. Acad Radiol. 2016;23:446–56.CrossRefGoogle Scholar
  30. 30.
    Thibault G, Tudorica A, Afzal A, Chui SY, Naik A, Troxell ML, et al. DCE-MRI texture features for early prediction of breast cancer therapy response. Tomography. 2017;3:23–32.CrossRefGoogle Scholar
  31. 31.
    Heisen M, Fan X, Buurman J, van Riel NA, Karczmar GS, ter Haar Romeny BM. The influence of temporal resolution in determining pharmacokinetic parameters from DCE-MRI data. Magn Reson Med. 2010;63:811–6.CrossRefGoogle Scholar
  32. 32.
    de Bazelaire C, Calmon R, Thomassin I, Brunon C, Hamy AS, Fournier L, et al. Accuracy of perfusion MRI with high spatial but low temporal resolution to assess invasive breast cancer response to neoadjuvant chemotherapy: a retrospective study. BMC Cancer. 2011;11:361.CrossRefGoogle Scholar
  33. 33.
    Othman AE, Falkner F, Weiss J, Kruck S, Grimm R, Martirosian P, et al. Effect of temporal resolution on diagnostic performance of dynamic contrast-enhanced magnetic resonance imaging of the prostate. Invest Radiol. 2016;51:290–6.CrossRefGoogle Scholar
  34. 34.
    Park VY, Kim EK, Kim MJ, Yoon JH, Moon HJ. Perfusion parameters on breast dynamic contrast-enhanced MRI are associated with disease-specific survival in patients with triple-negative breast cancer. AJR Am J Roentgenol. 2017;208:687–94.CrossRefGoogle Scholar
  35. 35.
    McGrath DM, Bradley DP, Tessier JL, Lacey T, Taylor CJ, Parker GJ. Comparison of model-based arterial input functions for dynamic contrast-enhanced MRI in tumor bearing rats. Magn Reson Med. 2009;61:1173–84.CrossRefGoogle Scholar
  36. 36.
    Attenberger UI, Sourbron SP, Notohamiprodjo M, Lodemann KP, Glaser CG, Reiser MF, et al. MR-based semi-automated quantification of renal functional parameters with a two-compartment model—an interobserver analysis. Eur J Radiol. 2008;65:59–65.CrossRefGoogle Scholar
  37. 37.
    Othman AE, Falkner F, Kessler DE, Martirosian P, Weiss J, Kruck S, et al. Comparison of different population-averaged arterial-input-functions in dynamic contrast-enhanced MRI of the prostate: effects on pharmacokinetic parameters and their diagnostic performance. Magn Reson Imaging. 2016;34:496–501.CrossRefGoogle Scholar
  38. 38.
    Heye T, Davenport MS, Horvath JJ, Feuerlein S, Breault SR, Bashir MR, et al. Reproducibility of dynamic contrast-enhanced MR imaging. Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions. Radiology. 2013;266:801–11.CrossRefGoogle Scholar
  39. 39.
    Li X, Welch EB, Chakravarthy AB, Xu L, Arlinghaus LR, Farley J, et al. Statistical comparison of dynamic contrast-enhanced MRI pharmacokinetic models in human breast cancer. Magn Reson Med. 2012;68:261–71.CrossRefGoogle Scholar

Copyright information

© The Japanese Breast Cancer Society 2018

Authors and Affiliations

  • Ken Nagasaka
    • 1
  • Hiroko Satake
    • 1
  • Satoko Ishigaki
    • 1
  • Hisashi Kawai
    • 1
  • Shinji Naganawa
    • 1
  1. 1.Department of RadiologyNagoya University Graduate School of MedicineNagoyaJapan

Personalised recommendations