Current Fungal Infection Reports

, Volume 12, Issue 4, pp 195–200 | Cite as

Pityriasis Versicolor: Treatment Update

  • Martin Arce
  • Daniela Gutiérrez-Mendoza
Fungal Infections of Skin and Subcutaneous Tissue (A Bonifaz, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Fungal Infections of Skin and Subcutaneous Tissue


Purpose of Review

To address the latest treatments used for pityriasis versicolor and identify those that have proven to be effective in recent publications.

Recent Findings

Even though Malassezia spp. have shown resistance to antifungals, classical treatments continue to be effective, and other novelty therapies including light therapies have shown promising results in the treatment of this condition.


Pityriasis versicolor is a common superficial fungal infection of the skin. There are numerous and diverse topical and systemic therapeutic options that are successful for the treatment and prophylaxis of this mycosis. New substances that act against the fungus through other mechanisms of action different from those used until now are expected in the near future.


Superficial mycosis Tropical mycosis Pytiriasis versicolor Tinea versicolor Malassezia spp. Antifungals 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interests.

Human and Animal Rights and Informed Consent

There was no experiment done on human or animal subjects by any of the authors for the publication of this article.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Gaitanis G, Velegraki A, Mayser P, Bassukas ID. Skin diseases associated with Malassezia yeasts: facts and controversies. Clin Dermatol. 2013;31:455–63.CrossRefGoogle Scholar
  2. 2.
    Harada K, Saito M, Sugita T, Tsuboi R. Malassezia species and their associated skin diseases. J Dermatol. 2015;42:250–7. Scholar
  3. 3.
    Rios-Yuil JM. Pityriasis versicolor: clinical spectrum and diagnosis. Curr Fungal Infect Rep. 2016;10:121–5. Scholar
  4. 4.
    Borelli D, Jacobs PH, NaIl L. Tinea versicolor: epidemiologic, clinical, and therapeutic aspects. J Am Acad Dermatol. 1991;25:300–5.CrossRefGoogle Scholar
  5. 5.
    Thoma W, Krämer HJ, Mayser P. Pityriasis versicolor alba. J Eur Acad Dermatol Venereol. 2005;19(2):147–52. Scholar
  6. 6.
    Cullingham K, Hull PR. Atrophying pityriasis versicolor. CMAJ. 2014;186(10):776. Scholar
  7. 7.
    Romero-Sandoval K, Costa AA, Teixeira Sousa MG, et al. Recurrent and disseminated pityriasis versicolor: a novel clinical form consequent to Malassezia-host interaction? Med Hypotheses. 2017;109:139–44. Scholar
  8. 8.
    Faergemann J. Management of seborrheic dermatitis and pityriasis versicolor. Am J Clin Dermatol. 2000;1:75–80.,001,020-00001.CrossRefPubMedGoogle Scholar
  9. 9.
    Isa-Isa R, Cruz AC, Arenas R, Duarte Y, Linares L, Bogaert H. Pitiriasis versicolor en niños. Estudio epidemiológico y micológico de 797 casos estudiados en la República Dominicana. Med Cutan Iber Lat Am. 2002;30(1):5–8.Google Scholar
  10. 10.
    Motta de Morais P, Souza Cunha MG, Moreira Frota MZ. Clinical aspects of patients with pityriasis versicolor seen at a referral center for tropical dermatology in Manaus, Amazonas, Brazil. An Bras Dermatol. 2010;85(6):797–803.CrossRefGoogle Scholar
  11. 11.
    • Gupta A, Foley K. Antifungal treatment for pityriasis versicolor. J Fungi. 2015;1:13–29. A review and evaluation of studies conducted with azole antifungics and terbinafine in pityriasis versicolor is presented.CrossRefGoogle Scholar
  12. 12.
    Helou J, Obeid G, Moutran R, Maatouk I. Pityriasis versicolor: a case of resistance to treatment. Int J Dermatol. 2014;53(2):e114–6.
  13. 13.
    Findley K, Oh J, Yang J, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;000:1–4. Scholar
  14. 14.
    Jo J-H, Kennedy EA, Kong HH. Topographical and physiological differences of the skin mycobiome in health and disease. Virulence. 2017;8:324–33. Scholar
  15. 15.
    Sparber F, LeibundGut-Landmann S. Host responses to Malassezia spp in the mammalian skin. Front Immunol. 2017;8:1614. Scholar
  16. 16.
    Wang QM, Theelen BT, Groenewald M, Bai FY, Boekhout T. Moniliellomycetes and Malasseziomycetes, two new classes in Ustilaginomycotina. Persoonia. 2014;33:41–7. Scholar
  17. 17.
    Wu G, Zhao H, Li C, et al. Genus-wide comparative genomics of Malassezia delineates its phylogeny, physiology, and niche adaptation on human skin. PLoS Genet. 2015;11(11):e1005614.
  18. 18.
    •• Honnavar P, Prasad GS, Ghosh A, et al. Malassezia arunalokei sp. nov., a novel yeast species isolated from seborrhoeic dermatitis patients and healthy individuals from India. J Clin Microbiol. 2016. This article introduces a new species of Malassezia found in human skin.
  19. 19.
    •• Cabañes FJ, Coutinho DA, Puig L, Bragulat R, Castella G. New lipid-dependent Malassezia species from parrots. Nuevas especies lipodependientes del género Malassezia procedentes de loros. Rev Iberoam Micol. 2016;33:92–9. This publication presents another novo species of Malassezia isolated in birds.CrossRefPubMedGoogle Scholar
  20. 20.
    Crespo Erchiga V, Ojeda Martos A, Vera Casaño A, Crespo Erchiga A, Sanchez FF. Malassezia globosa as the causative agent of pityriasis versicolor. Br J Dermatol. 2000;143(4):799–803.CrossRefGoogle Scholar
  21. 21.
    Morishita N, Sei Y, Sugita T. Molecular analysis of Malassezia microflora from patients with pityriasis versicolor. Mycopathologia. 2006;161:61–5. Scholar
  22. 22.
    Prohic A, Jovovic Sadikovic T, Krupalija-Fazlic M, Kuskunovic-Vlahovljak S. Malassezia species in healthy skin and in dermatological conditions. Int J Dermatol. 2016;55:494–504.CrossRefGoogle Scholar
  23. 23.
    White TC, Findley K, Dawson TL Jr, et al. Fungi on the skin: dermatophytes and Malassezia. Cold Spring Harb Perspect Med. 2014;4:a019802.CrossRefGoogle Scholar
  24. 24.
    Cruz R, Vieille P, Giusiano G, Sosa MA. Pitiriasis versicolor por Malassezia pachydermatis: Caso clínico. Pityriasis versicolor caused by Malassezia pachydermatis: Clinical case. Bol Micol. 2010;25:37–4. Scholar
  25. 25.
    Velegraki A, Cafarchia C, Gaitanis G, Iatta R, Boekhout T. Malassezia infections in humans and animals: pathophysiology, detection, and treatment. PLoS Pathog. 2015;11(1):e1004523. Scholar
  26. 26.
    Drake LA, Dinehart SM, Farmer ER, et al. Guidelines of care for superficial mycotic infections of the skin: pityriasis (tinea) versicolor. J Am Acad Dermatol. 1996;34:287–9.CrossRefGoogle Scholar
  27. 27.
    Shi TW, Zhang JA, Tang YB, et al. A randomized controlled trial of combination treatment with ketoconazole 2% cream and adapalene 0.1% gel in pityriasis versicolor. J Dermatol Treat. 2014:1–4.
  28. 28.
    Dias MFRG, Quaresma-Santos MVP, Bernardes-Filho F, et al. Update on therapy for superficial mycoses: review article part I. An Bras Dermatol. 2013;88(5):764–74. Scholar
  29. 29.
    Sharquie KE, Al-Hamamy HM, Noaimi AA, Al-Shawi IA. Treatment of pityriasis versicolor using 1% diclofenac gel and clotrimazole cream (comparative therapeutic study). JSSDDS. 2011;15:19–23. Scholar
  30. 30.
    Fernández-Vozmediano JM, Armario-Hita JC. Etiopatogenia y tratamiento de la pitiriasis versicolor. Med Clin (Barc). 2006;126:7–13.CrossRefGoogle Scholar
  31. 31.
    Bamford JTM, Flores-Genuino RNS, Ray S, et al. Interventions for the treatment of pityriasis versicolor. Cochrane Database Syst Rev 2014; Issue 7. Art. No.: CD011208.
  32. 32.
    Reeder NL, Kaplan J, Xu J, et al. Zinc pyrithione inhibits yeast growth through copper influx and inactivation of iron-sulfur proteins. Antimicrob Agents Chemother. 2011;55:5753–60. Scholar
  33. 33.
    Saunders CW, Scheynius A, Heitman J. Malassezia fungi are specialized to live on skin and associated with dandruff, eczema, and other skin diseases. PLoS Pathog. 2012;8(6):e1002701. Scholar
  34. 34.
    • Hald M, Arendrup MC, Svejgaard EL, et al. Evidence-based Danish guidelines for the treatment of Malassezia – related skin diseases. Acta Derm Venereol. 2015;95:12–9 Analysis and treatment recommendations for Malassezia infections based on evidence level.CrossRefGoogle Scholar
  35. 35.
    Pérez AR. Resultados del tratamiento con yodo salicílico y ketoconazol en la pitiriasis versicolor. Rev. haban cienc méd [Internet]. 2008;7:1–10 Scholar
  36. 36.
    Rivard SC. Pityriasis versicolor: avoiding pitfalls in disease diagnosis and therapy. Mil Med. 2013;178(8):904–6. Scholar
  37. 37.
    Heeres J, Meerpoel L, Lewi P. Conazoles. Molecules. 2010;15:4129–88. Scholar
  38. 38.
    • Angiolella L, Carradori S, Maccallini C, Giusiano G, Supuran CT. Targeting Malassezia species for novel synthetic and natural antidandruff agents. Curr Med Chem. 2017;24:1–21. Article review of new treatments focused on Malassezia infections.CrossRefGoogle Scholar
  39. 39.
    Vandeputte P, Ferrari S, Coste AT. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol. 2012;2012(713687):26. Scholar
  40. 40.
    Scorzoni L, de Paula e Silva ACA, Marcos CM, et al. Antifungal therapy: new advances in the understanding and treatment of mycosis. Front Microbiol. 2017;8:36. Scholar
  41. 41.
    Fuentefria AM, Pippi B, Dalla Lana DF, Donato KK, de Andrade SF. Antifungals discovery: an insight into new strategies to combat antifungal resistance. Lett Appl Microbiol. 2018;66(1):2–13. Scholar
  42. 42.
    •• Iatta R, Puttilli MR, Immediato D, et al. The role of drug efflux pumps in Malassezia pachydermatis and Malassezia furfur defense against azoles. Mycoses 2016; 1–5. This publication explains one of the resistance mechanisms Malassezia spp. anti-fungal against.
  43. 43.
    Gupta AK, Kohli Y, Li A, Faergemann J, Summerbell RC. In vitro susceptibility of the seven Malassezia species to ketoconazole, voriconazole, itraconazole and terbinafine. Br J Dermatol. 2000;142:758–65.CrossRefGoogle Scholar
  44. 44.
    Cafarchia C, Iatta R, Immediato D, Puttilli R, Otranto D. Azole susceptibility of Malassezia pachydermatis and Malassezia furfur and tentative epidemiological cut-off values. Med Mycol. 2015;00:1–6. Scholar
  45. 45.
    Miranda KC, de Araujo CR, Costa CR, et al. Antifungal activities of azole agents against the Malassezia species. Int J Antimicrob Agents. 2007;29(3):281–94. Scholar
  46. 46.
    Rojas FD, Córdoba SB, Sosa MA, et al. Antifungal susceptibility testing of Malassezia yeast: comparison of two different methodologies. Mycoses. 2016:1–8.
  47. 47.
    Leong C, Buttafuoco A, Glatz M, Bosshard PP. Antifungal susceptibility testing of Malassezia spp. with an optimized colorimetric broth microdilution method. J Clin Microbiol. 2017;55:1883–93. Scholar
  48. 48.
    Sepahvand A, Eliasy H, Rahimi H, et al. Phytotherapy for tinea versicolor. Int J Health Med Curr Res. 2017;2:592–9. Scholar
  49. 49.
    Rhimi W, Salem IB, et al. Chemical composition, antibacterial and antifungal activities of crude Dittrichia viscosa (L.) greuter leaf extracts. Molecules. 2017;22(942):1–13. Scholar
  50. 50.
    • Ianiri G, Applen Clancey S, Lee SC, Heitman J. FKBP12-dependent inhibition of calcineurin mediates immunosuppressive antifungal drug action in Malassezia. mBio. 8:e01752–17. This study paves the use of calcineurin inhibitors as alternatives in the treatment of pityriasis versicolor.
  51. 51.
    Sepaskhah M, Sadat MS, Pakshir K, Bagheri Z. Comparative efficacy of topical application of tacrolimus and clotrimazole in the treatment of pityriasis versicolor: a single blind, randomized clinical trial. Mycoses. 2017;60(5):338–42. Scholar
  52. 52.
    Qiao J, Li R, Ding Y, Fang H. Photodynamic therapy in the treatment of superficial mycoses: an evidence-based evaluation. Mycopathologia. 2010;170(5):339–43. Scholar
  53. 53.
    Dai T, Fuchs BB, Coleman JJ, et al. Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Front Microbiol. 2012;3:1–16. Scholar
  54. 54.
    Penjweini R, Mokmeli S, Becker K, Dodt HU, Saghafi S. Effects of UV-, visible-, near-infrared beams in three therapy resistance case studies of fungal skin infections. OPJ. 2013;3:1–10. Scholar
  55. 55.
    Kim YJ, Kim YC. Successful treatment of pityriasis versicolor with 5-aminolevulinic acid photodynamic therapy. Arch Dermatol. 2007;143:1218–9. Scholar
  56. 56.
    Abreu L, Adriano AR, Félix Bravo B, et al. Treatment of pityriasis versicolor with photodynamic therapy. J Am Acad Dermatol 2013; 68(4):S1, AB131.
  57. 57.
    Gilaberte Y, Aspiroz C, Alejandre C, Rezusta A. Crecimiento de Malassezia en piel peritumoral tras terapia fotodinámica con metil-5-aminolevulinato para queratosis actínica y cáncer de piel no melanoma. Actas Dermosifiliogr. 2015;106:70–1.CrossRefGoogle Scholar
  58. 58.
    Balevi A, Üstüner P, Kakşi SA, Özdemir M. Narrow-band UV-B phototherapy: an effective and reliable treatment alternative for extensive and recurrent pityriasis versicolor. J Dermatol Treat. 2017;9:1. Scholar
  59. 59.
    Ibekwea PU, Ogunbiyib AO, Ruzickac T, Sa‘rdyc M. Quality of life determinants in secondary school students with pityriasis versicolor. J Egypt Women Dermatol Soc. 2015;12:49–54. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Martin Arce
    • 1
  • Daniela Gutiérrez-Mendoza
    • 1
  1. 1.TijuanaMexico

Personalised recommendations