Advertisement

Sterilization efficiency of pathogen-contaminated cottons in a laundry machine

  • Yoonjae Shin
  • Jungha Park
  • Woojun ParkEmail author
Article

Abstract

Pathogenic bacteria on abiotic surfaces such as fabrics, bedding, patient wears, and surgical tools are known to increase the risk of bacterial diseases in infants and the elderly. The desiccation tolerance of bacteria affects their viability in cotton. Thus, washing and drying machines are required to use conditions that ensure the sterilization of bacteria in cotton. The objective of this study is to determine the effects of various sterilization conditions of washing and drying machines on the survival of three pathogenic bacteria (Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus) commonly presented in contaminated cotton and two non-pathogenic bacteria (Bacillus subtilis and Escherichia coli) in cotton. High survival rates of A. baumannii and S. aureus in desiccated cotton were observed based on scanning electron microscope and replicate organism direct agar contact assay. The survival rates of A. baumannii and S. aureus exposed in desiccated cotton for 8 h were higher (14.4 and 5.0%, respectively) than those of other bacteria (< 0.5%). All tested bacteria were eradicated at low-temperature (< 40°C) washing with activated oxygen bleach (AOB). However, bacterial viability was shown in low temperature washing without AOB. High-temperature (> 60°C) washing was required to achieve 99.9% of the sterilization rate in washing without AOB. The sterilization rate was 93.2% using a drying machine at 60°C for 4 h. This level of sterilization was insufficient in terms of time and energy efficiency. High sterilization efficiency (> 99.9%) at 75°C for 3 h using a drying machine was confirmed. This study suggests standard conditions of drying machines to remove bacterial contamination in cotton by providing practical data.

Keywords

Acinetobacter baumannii desiccation tolerance dry conditions drying machine Staphylococcus aureus washing machine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by a grant from the Advanced R&D Team of Samsung Electronics.

Supplementary material

12275_2020_9391_MOESM1_ESM.pdf (1000 kb)
Supplementary material, approximately 228 KB.

References

  1. Almatroudi, A., Tahir, S., Hu, H., Chowdhury, D., Gosbell, I.B., Jensen, S.O., Whiteley, G.S., Deva, A.K., Glasbey, T., and Vickery, K. 2018. Staphylococcus aureus dry-surface biofilms are more resistant to heat treatment than traditional hydrated biofilms. J. Hosp. Infect.98, 161–167.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ann, L.C., Mahmud, S., Bakhori, S.K.M., Sirelkhatim, A., Mohamad, D., Hasan, H., Seeni, A., and Rahman, R.A. 2014. Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceram Int.40, 2993–3001.CrossRefGoogle Scholar
  3. Antunes, L.C., Visca, P., and Towner, K.J. 2014. Acinetobacter baumannii: evolution of a global pathogen. Pathog. Dis.71, 292–301.PubMedCrossRefGoogle Scholar
  4. Aranda, J., Bardina, C., Beceiro, A., Rumbo, S., Cabral, M.P., Barbé, J., and Bou, G. 2011. Acinetobacter baumannii RecA protein in repair of DNA damage, antimicrobial resistance, general stress response, and virulence. J. Bacteriol.193, 3740–3747.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Arild, A.H., Brusdal, R., Tore, J., Gunnarsen, H., Terpstra, P.M.J., and van Kessel, I.A.C. 2003. An investigation of domestic laundry in Europe: habits, hygiene and technical performance. Statens Institutt for Forbruksforskning, Wageningen UR, Wageningen, the Netherland.Google Scholar
  6. Augustin, W., Fuchs, T., Föste, H., Schöler, M., Majschak, J.P., and Scholl, S. 2010. Pulsed flow for enhanced cleaning in food processing. Food Bioprod. Process88, 384–391.CrossRefGoogle Scholar
  7. Balasubramanian, D., Harper, L., Shopsin, B., and Torres, V.J. 2017. Staphylococcus aureus pathogenesis in diverse host environments. Pathog. Dis.75, ftx005.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Bloomfield, S.F., Cookson, B., Falkiner, F., Griffith, C., and Cleary, V. 2007. Methicillin-resistant Staphylococcus aureus, Clostridium difficile, and extended-spectrum beta-lactamase-producing Escherichia coli in the community: assessing the problem and controlling the spread. Am. J. Infect. Control.35, 86–88.PubMedCrossRefGoogle Scholar
  9. Bockmühl, D.P. 2017. Laundry hygiene-how to get more than clean. J. Appl. Microbiol.122, 1124–1133.PubMedCrossRefGoogle Scholar
  10. Boll, J.M., Tucker, A.T., Klein, D.R., Beltran, A.M., Brodbelt, J.S., Davies, B.W., and Trent, M.S. 2015. Reinforcing lipid a acylation on the cell surface of Acinetobacter baumannii promotes cationic antimicrobial peptide resistance and desiccation survival. mBio6, e00478–15.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Borkow, G. and Gabbay, J. 2007. Biocidal textiles can help fight nosocomial infections. Med. Hypotheses70, 990–994.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Brands, B., Honisch, M., Wegner, S., and Bockmühl, D.P. 2016. The effect of drying processes on the microbial load of laundry. H&PC Today11, 24–26.Google Scholar
  13. Breeuwer, P., Lardeau, A., Peterz, M., and Joosten, H.M. 2003. Desiccation and heat tolerance of Enterobacter sakazakii. J. Appl. Microbiol.95, 967–973.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Callewaert, C., Van-Nevel, S., Kerckhof, F.M., Granitsiotis, M.S., and Boon, N. 2015. Bacterial exchange in household washing machines. Front. Microbiol.6, 1381.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cavaliere, E., De-Cesari, S., Landini, G., Riccobono, E., Pallecchi, L., Rossolini, GM., and Gavioli, L. 2015. Highly bactericidal Ag nanoparticle films obtained by cluster beam deposition. Nanomedicine11, 1417–1423.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chapartegui-González, I., Lázaro-Díez, M., Bravo, Z., Navas, J., Icardo, J.M., and Ramos-Vivas, J. 2018. Acinetobacter baumannii maintains its virulence after long-time starvation. PLoS One13, e0201961.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen, A.I. and Goulian, M. 2018. A network of regulators promotes dehydration tolerance in Escherichia coli. Environ. Microbiol.20, 1283–1295.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cody, H.J., Smith, P.F., Blaser, M.J., LaForce, F.M., and Wang, W.L. 1984. Comparison of methods for recovery of Escherichia coli and Staphylococcus aureus from seeded laundry fabrics. Appl. Environ. Microbiol.47, 965–970.PubMedPubMedCentralGoogle Scholar
  19. Department of Health. 2010. Uniform and Workwear: Guidance on Uniform and Workwear Policies for NHS Employers. Department of Health, London, UK.Google Scholar
  20. Esbelin, J., Santos, T., and Hébraud, M. 2018. Desiccation: An environmental and food industry stress that bacteria commonly face. Food Microbiol.69, 82–88.PubMedCrossRefGoogle Scholar
  21. Espinal, P., Martí, S., and Vila, J. 2012. Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J. Hosp. Infect.80, 56–60.PubMedCrossRefGoogle Scholar
  22. Farr, S.B. and Kogoma, T. 1991. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol. Rev.55, 561–585.PubMedPubMedCentralGoogle Scholar
  23. Farrow, J.M. 3 rd, Wells, G., and Pesci, E.C. 2018. Desiccation tolerance in Acinetobacter baumannii is mediated by the two-component response regulator BfmR. PLoS One13, e0205638.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Hirai, Y. 1991. Survival of bacteria under dry conditions; from a viewpoint of nosocomial infection. J. Hosp. Infect.19, 191–200.PubMedCrossRefGoogle Scholar
  25. Honisch, M., Stamminger, R., and Bockmühl, D.P. 2014. Impact of wash cycle time, temperature and detergent formulation on the hygiene effectiveness of domestic laundering. J. Appl. Microbiol.117, 1787–1797.PubMedCrossRefGoogle Scholar
  26. Hsieh, Y.L. and Merry, J. 1986. The adherence of Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli on cotton, polyester and their blends. J. Appl. Bacteriol.60, 535–544.PubMedCrossRefGoogle Scholar
  27. Ibrahim, N.A., El-Zairy, M.R., Eid, B.M., El-Zairy, E.M., and Emam, E.M. 2015. New finishing possibilities for producing durable multifunctional cotton/wool and viscose/wool blended fabrics. Carbohydr. Polym.119, 182–193.PubMedCrossRefGoogle Scholar
  28. Jang, J., Hur, H.G., Sadowsky, M.J., Byappanahalli, M.N., Yan, T., and Ishii, S. 2017. Environmental Escherichia coli: ecology and public health implications-a review. J. Appl. Microbiol.123, 570–581.PubMedCrossRefGoogle Scholar
  29. Jawad, A., Heritage, J., Snelling, A.M., Gascoyne-Binzi, D.M., and Hawkey, P.M. 1996. Influence of relative humidity and suspending menstrua on survival of Acinetobacter spp. on dry surfaces. J. Clin. Microbiol.34, 288–287.Google Scholar
  30. Joo, E.J., Choi, J.Y., Chung, D.R., Song, J.H., and Ko, K.S. 2016. Characteristics of the community-genotype sequence type 72 methicillin-resistant Staphylococcus aureus isolates that underlie their persistence in hospitals. J. Microbiol.54, 445–450.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Lebre, P.H., De Maayer, P., and Cowan, D.A. 2017. Xerotolerant bacteria: surviving through a dry spell. Nat. Rev. Microbiol.15, 285–296.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Lidwell, O.M. and Lowbury, E.J. 1950. The survival of bacteria in dust: II. The effect of atmospheric humidity on the survival of bacteria in dust. J. Hyg. (Lond)48, 21–27.CrossRefGoogle Scholar
  33. Lucassen, R., Merettig, N., and Bockmühl, D.P. 2013. Antimicrobial efficacy of hygiene rinsers under consumer-related conditions. Tenside Surfact. Det.50, 259–262.CrossRefGoogle Scholar
  34. Luiz, G.C.C. and Christian, J.L.H. 2016. Experimental evaluation and transient simulation of detergent transport in household vertical axis washing machines. Chem. Eng. Res. Des.109, 720–729.CrossRefGoogle Scholar
  35. McConnell, M.J., Actis, L., and Pachón, J. 2013. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol. Rev.37, 130–155.PubMedCrossRefPubMedCentralGoogle Scholar
  36. McKenney, P.T., Driks, A., and Eichenberger, P. 2013. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat. Rev. Microbiol.11, 33–44.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Miescher, G., Lincke, H., and Rinderknecht, P. 1955. Investigation of bacterial desiccation. J. Invest. Dermatol.24, 293–300.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Munk, S., Johansen, C., Stahnke, L.H., and Adler-Nissen, J. 2001. Microbial survival and odor in laundry. J. Surfactants Deterg.4, 385–394.CrossRefGoogle Scholar
  39. Nocker, A., Fernández, P.S., Montijn, R., and Schuren, F. 2012. Effect of air drying on bacterial viability: A multiparameter viability assessment. J. Microbiol. Methods90, 86–95.PubMedCrossRefGoogle Scholar
  40. O’Gara, J.P. 2017. Into the storm: Chasing the opportunistic pathogen Staphylococcus aureus from skin colonisation to life-threatening infections. Environ. Microbiol.19, 3823–3833.PubMedCrossRefGoogle Scholar
  41. Ossowski, B. and Duchmann, U. 1997. Effect of domestic laundry processes on mycotic contamination of textiles. Hautarzt48, 397–401.PubMedCrossRefGoogle Scholar
  42. Pinho, M.G., Kjos, M., and Veening, J.W. 2013. How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nat. Rev. Microbiol.11, 601–614.PubMedCrossRefGoogle Scholar
  43. Potts, M. 1994. Desiccation tolerance of prokaryotes. Microbiol. Rev.58, 755–805.PubMedPubMedCentralGoogle Scholar
  44. Rebell, G., Pillsbury, D.M., De Saint Phalle, M., and Ginsburg, D. 1950. Factors affecting the rapid disappearance of bacteria placed on the normal skin. J. Invest. Dermatol.14, 247–264.PubMedCrossRefGoogle Scholar
  45. Riley, K., Williams, J., Owen, L., Shen, J., Davies, A., and Laird, K. 2017. The effect of low-temperature laundering and detergents on the survival of Escherichia coli and Staphylococcus aureus on textiles used in healthcare uniforms. J. Appl. Microbiol.123, 280–286.PubMedCrossRefGoogle Scholar
  46. Rodriguez-Rojas, A., Oliver, A., and Blazquez, J. 2012. Intrinsic and environmental mutagenesis drive diversification and persistence of Pseudomonas aeruginosa in chronic lung infections. J. Infect. Dis.205, 121–127.PubMedCrossRefGoogle Scholar
  47. Rountree, P.M. 1963. The effect of desiccation on the viability of Staphylococcus aureus. J. Hyg. (Lond)61, 265–272.CrossRefGoogle Scholar
  48. Sattar, S.A., Springthorpe, S., Mani, S., Gallant, M., Nair, R.C., Scott, E., and Kain, J. 2001. Transfer of bacteria from fabrics to hands and other fabrics: development and application of a quantitative method using Staphylococcus aureus as a model. J. Appl. Microbiol.90, 962–970.PubMedCrossRefGoogle Scholar
  49. Sehulster, L.M. 2015. Healthcare laundry and textiles in the United States: Review and commentary on contemporary infection prevention issues. Infect. Control Hosp. Epidemiol.36, 1073–1088.PubMedCrossRefGoogle Scholar
  50. Stone, S.P., Fuller, C., Savage, J., Cookson, B., Hayward, A., Cooper, B., Duckworth, G., Michie, S., Murray, M., Jeanes, A., et al. 2012. Evaluation of the national Cleanyourhands campaign to reduce Staphylococcus aureus bacteraemia and Clostridium difficile infection in hospitals in England and Wales by improved hand hygiene: four year, prospective, ecological, interrupted time series study. BMJ344, e3005.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Tapia, H., Young, L., Fox, D., Bertozzi, C.R., and Koshland, D. 2015. Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA112, 6122–6127.PubMedCrossRefGoogle Scholar
  52. Vriezen, J.A., de Bruijn, F.J., and Nüsslein, K. 2006. Desiccation responses and survival of Sinorhizobium meliloti USDA 1021 in relation to growth phase, temperature, chloride and sulfate availability. Lett. Appl. Microbiol.42, 172–178.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Weernink, A., Severin, W.P., Tjernberg, I., and Dijkshoorn, L. 1995. Pillows, an unexpected source of Acinetobacter. J. Hosp. Infect.29, 189–199.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Wolfe, J. and Bryant, G. 1999. Freezing, drying, and/or vitrification of membrane-solute-water systems. Cryobiology39, 103–129.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Zhang, Q. and Yan, T. 2012. Correlation of intracellular trehalose concentration with desiccation resistance of soil Escherichia coli populations. Appl. Environ. Microbiol.78, 7407–7413.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2020

Authors and Affiliations

  1. 1.Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological EngineeringKorea UniversitySeoulRepublic of Korea
  2. 2.Digital Appliances BusinessSamsung ElectronicsSuwonRepublic of Korea

Personalised recommendations