Paraflavitalea soli gen. nov., sp. nov., isolated from greenhouse soil

  • Jun Heo
  • Hang-Yeon Weon
  • Hayoung Cho
  • Seung-Beom Hong
  • Jeong-Seon Kim
  • Soo-Jin KimEmail author
  • Soon-Wo Kwon


A bacterial strain designated 5GH32-13T was isolated from greenhouse soil in Yongin-city, Republic of Korea. Cells were Gram-stain-negative, strictly aerobic, motile rods of two different shapes. The strain was catalase-positive and oxidase-negative. Flexirubin-like pigments were not detected. β-Carotene was produced. The strain grew in the range of 10–37°C (optimum of 28–30°C) and pH 6–8 (optimum of pH 7) and tolerated up to 1% (w/v) NaCl (optimum of 0%). According to the 16S rRNA gene sequence comparison, strain 5GH32-13T shared a sequence similarity of less than 96.0% with all validly named taxa, having the highest sequence similarity with Pseudoflavitalea soli KIS20-3T (95.8%), Pseudoflavitalea rhizosphaerae T16R-265T (95.4%), Flavitalea gansuensis JCN-23T (95.3%), Pseudobacter ginsenosidimutans Gsoil 221T (95.3%), and Flavitalea populi HY-50RT (95.2%). A phylogenetic tree showed that strain 5GH32-13T was not grouped consistently into any specific genus. Its only polyamine was homospermidine, and its major fatty acids (> 10% of total fatty acids) were iso-C15:0, iso-C17:0 3-OH, and iso-C15:1 G. The strain’s only respiratory quinone was MK-7, and its polar lipids were phosphatidylethanolamine, one unidentified phospholipid, six unidentified aminolipids and four unidentified lipids. Its DNA G + C content was 47.5 mol%. The results from chemotaxonomic, phenotypic and phylogenetic analyses indicated that strain 5GH32-13T represents a novel species of a novel genus of the family Chitinophagaceae, and the name Paraflavitalea soli gen. nov., sp. nov. is proposed. The type strain is 5GH32-13T (= KACC 17331T = JCM 33061T).


new genus new species Paraflavitalea soli Chitinophagaceae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank Professor Bernhard Schink and Professor Aharon Oren for checking the species epithet.

This study was carried out with the support (PJ013549) of the National Institute of Agricultural Sciences, Rural Development Administration, Republic of Korea.

Supplementary material

12275_2020_9236_MOESM1_ESM.pdf (381 kb)
Supplementary material, approximately 228 KB.


  1. Auch, A.F., von Jan, M., Klenk, H.P., and Göker, M. 2010. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand. Genomic Sci.2, 117–134.CrossRefGoogle Scholar
  2. Busse, H.J., Bunka, S., Hensel, A., and Lubitz, W. 1997. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int. J. Syst. Bacteriol.47, 698–708.CrossRefGoogle Scholar
  3. Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods10, 563–569.CrossRefGoogle Scholar
  4. Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D.R., da Costa, M.S., Rooney, A.P., Yi, H., Xu, X.W., De Meyer, S., et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol.68, 461–466.CrossRefGoogle Scholar
  5. Da Costa, M.S., Albuquerque, L., Nobre, M.F., and Wait, R. 2011. The identification of polar lipids in prokaryotes. Methods Microbiol.38, 165–181.CrossRefGoogle Scholar
  6. Fautz, E. and Reichenbach, H. 1980. A simple test for flexirubin-type pigments. FEMS Microbiol. Lett.8, 87–91.CrossRefGoogle Scholar
  7. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol.17, 368–376.CrossRefGoogle Scholar
  8. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool.20, 406–416.CrossRefGoogle Scholar
  9. Kämpfer, P., Lodders, N., and Falsen, E. 2011. Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov. Int. J. Syst. Evol. Microbiol.61, 518–523.CrossRefGoogle Scholar
  10. Kim, S.J., Cho, H., Ahn, J.H., Weon, H.Y., Seok, S.J., Kim, J.S., and Kwon, S.W. 2016. Pseudoflavitalea rhizosphaerae gen. nov., sp. nov., isolated from rhizosphere of tomato, and proposal to reclassify Flavitalea soli as Pseudoflavitalea soli comb. nov. Int. J. Syst. Evol. Microbiol.66, 4167–4171.CrossRefGoogle Scholar
  11. Lagesen, K., Hallin, P.F., Rødland, E., Stærfeldt, H.H., Rognes, T., and Ussery, D.W. 2007. RNAmmer: consistent annotation of rRNA genes in genomic sequences. Nucleic Acids Res.35, 3100–3108.CrossRefGoogle Scholar
  12. Liu, M.J., Jin, C.Z., Ersiman, A., Park, D.J., and Kim, C.J. 2019. Flavitalea flava sp. nov., a bacterium isolated from a soil sample, and emended description of the genus Flavitalea. Antonie van Leeuwenhoek112, 275–281.CrossRefGoogle Scholar
  13. MeierKolthoff, J.P., Auch, A.F., Klenk, H.P., and Göker, M. 2013. Genome sequence based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14, 60.CrossRefGoogle Scholar
  14. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods2, 233–241.CrossRefGoogle Scholar
  15. Pruesse, E., Peplies, J., and Glöckner, F.O. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28, 1823–1829.CrossRefGoogle Scholar
  16. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4, 406–425.PubMedPubMedCentralGoogle Scholar
  17. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI, Newark, DE, USA.Google Scholar
  18. Siddiqi, M.Z. and Im, W.T. 2016. Pseudobacter ginsenosidimutans gen. nov., sp. nov., isolated from ginseng cultivating soil. Int. J. Syst. Evol. Microbiol.66, 3449–3455.CrossRefGoogle Scholar
  19. Smibert, R. and Krieg, N.R. 1994. Phenotypic characterization. In Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. (eds). Methods for General and Molecular Bacteriology. 2nd edn, pp. 607–654. American Society for Microbiology, Washington DC, USA.Google Scholar
  20. Soma, Y., Tanaka, A., Soma, M., and Kawai, T. 1996. Photosynthetic pigments and perylene in the sediments of southern basin of Lake Baikal. Org. Geochem.24, 553–561.CrossRefGoogle Scholar
  21. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol.30, 2725–2729.CrossRefGoogle Scholar
  22. Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E.P., Zaslavsky, L., Lomsadze, A., Pruitt, K.D., Borodovsky, M., and Ostell, J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res.44, 6614–6624.CrossRefGoogle Scholar
  23. Tonucci, L.H., Holden, J.M., Beecher, G.R., Khachik, F., Davis, C.S., and Mulokozi, G. 1995. Carotenoid content of thermally processed tomato-based food products. J. Agric. Food Chem.43, 579–586.CrossRefGoogle Scholar
  24. Wang, Y., Cai, F., Tang, Y., Dai, J., Qi, H., Rahman, E., Peng, F., and Fang, C. 2011. Flavitalea populi gen. nov., sp. nov., isolated from soil of a Euphrates poplar (Populus euphratica) forest. Int. J. Syst. Evol. Microbiol.61, 1554–1560CrossRefGoogle Scholar
  25. Wei, Z., Huang, Y., Danzeng, W., Kim, M.C., Zhu, G., Zhang, Y., Liu, Z., and Peng, F. 2017. Flavitalea antarctica sp. nov., isolated from Fildes Peninsula, Antarctica. Int. J. Syst. Evol. Microbiol.67, 2258–2262.CrossRefGoogle Scholar
  26. Weon, H.Y., Kim, B.Y., Yoo, S.H., Lee, S.Y., Kwon, S.W., Go, S.J., and Stackebrandt, E. 2006. Niastella koreensis gen. nov., sp. nov. and Niastella yeongjuensis sp. nov., novel members of the phylum Bacteroidetes, isolated from soil cultivated with Korean ginseng. Int. J. Syst. Evol. Microbiol.56, 1777–1782.CrossRefGoogle Scholar
  27. Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F.O., Ludwig, W., Schleifer, K.H., Whitman, W.B., Euzéby, J., Amann, R., and RossellóMóra, R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol.12, 635–645.CrossRefGoogle Scholar
  28. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol.67, 1613–1617.CrossRefGoogle Scholar
  29. Zhang, L., Qin, B., Jia, Z., and Wei, G. 2013a. Flavitalea gansuensis sp. nov., isolated from soil from an arid area, and emended descriptions of the genus Flavitalea and Flavitalea populi. Int. J. Syst. Evol. Microbiol.63, 490–495.CrossRefGoogle Scholar
  30. Zhang, Y., Tang, K., Shi, X., and Zhang, X.H. 2013b. Flaviramulus ichthyoenteri sp. nov., an N-acylhomoserine lactone-degrading bacterium isolated from the intestine of a flounder (Paralichthys olivaceus), and emended descriptions of the genus Flaviramulus and Flaviramulus basaltis. Int. J. Syst. Evol. Microbiol.63, 4477–4483.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2020

Authors and Affiliations

  • Jun Heo
    • 1
  • Hang-Yeon Weon
    • 1
  • Hayoung Cho
    • 1
  • Seung-Beom Hong
    • 1
  • Jeong-Seon Kim
    • 1
  • Soo-Jin Kim
    • 1
    Email author
  • Soon-Wo Kwon
    • 1
  1. 1.Agricultural Microbiology DivisionNational Institute of Agricultural Sciences, Rural Development AdministrationJeollabuk-doRepublic of Korea

Personalised recommendations