Advertisement

Anaerotignum faecicola sp. nov., isolated from human faeces

  • Seung-Hyeon Choi
  • Ji-Sun Kim
  • Jam-Eon Park
  • Keun Chul Lee
  • Mi Kyung Eom
  • Byeong Seob Oh
  • Seung Yeob Yu
  • Se Won Kang
  • Kook-Il Han
  • Min Kuk Suh
  • Dong Ho Lee
  • Hyuk Yoon
  • Byung-Yong Kim
  • Je Hee Lee
  • Ju Huck Lee
  • Jung-Sook LeeEmail author
  • Seung-Hwan ParkEmail author
Article

Abstract

A strictly anaerobic bacterium, designated as strain KGMB-03357T, was isolated from the faeces of a healthy Korean selected by Bundang Seoul National University based on health status. Cells of strain KGMB03357T are Gram-stain-positive, non-motile, non-spore-forming, and observed as straight or curved rods. The isolate grew at 10–45°C (optimum temperature of 40°C) and a pH range of 5.1–10.5 (optimum pH of 6.8). Analysis of phylogenetic trees based on the 16S rRNA gene sequences revealed that strain KGMB03357T forms a lineage within the genus Anaerotignum, and is most closely related to Anaerotignum lactatifermentans G17T (= KCTC 15066T, 96.1%), Anaerotignum propionicum DSM 1682T (= KCTC 5582T, 94.9%), Anaerotignum neopropionicum DSM 03847T (= KCTC 15564T, 94.9%), and Anaerotignum aminivorans SH021T (= KCTC 15705T, 94.8%). The ANI values between strain KGMB 03357T and members of the genus Anaerotignum were 73.3–71.0%, which are below the ANI criterion for interspecies identity. The DNA G + C content based on the whole-genome sequence is 47.3 mol%. The major cellular fatty acids of strain KGMB03357T are C16:0, C18:0, C18∶1 cis 9, and anteiso-C15∶0. Strain KGMB03357T contains meso-diaminopimelic acid as the diagnostic amino acid in the cell wall peptidoglycan. Based on the phenotypic, phylogenetic, and genomic properties, strain KGMB 03357T represents a novel species of the genus Anaerotignum, for which the name Anaerotignum faecicola sp. nov. is proposed. The type strain is KGMB03357T (= KCTC 15736T = DSM 107953T).

Keywords

Anaerotignum faecicola human faeces taxonomy microbiota 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Professor Bernhard Schink for his advice on naming the novel strain. This research was supported by the Bio & Medical Technology Development program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MIST) of the Republic of Korea and a grant from the Korea Research Institute of Bioscience & Biotechnology (KRIBB) Research Initiative Program. J.-S. L. was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2016M3A9F3946674). S.-H.P. was supported by the Basic Science Research Program through the NRF funded by the Ministry of Education (NRF-2014R1A6A3A-04057492). This study was conducted in accordance with the IRB regulation at KCTC (P01-201702-31-007).

Supplementary material

12275_2019_9268_MOESM1_ESM.pdf (196 kb)
Supplementary material, approximately 195 KB.

References

  1. Browne, H.P., Forster, S.C., Anonye, B.O., Kumar, N., Neville, B.A., Stares, M.D., Goulding, D., and Lawley, T.D. 2016. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546.CrossRefGoogle Scholar
  2. Chun, J. and Goodfellow, M. 1995. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45, 240–245.CrossRefGoogle Scholar
  3. Euzeby, J.P. 1997. List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int. J. Syst. Bacteriol. 47, 590–592.CrossRefGoogle Scholar
  4. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefGoogle Scholar
  5. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Biol. 20, 406–416.CrossRefGoogle Scholar
  6. Guinane, C.M. and Cotter, P.D. 2013. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Therap. Adv. Gastroenterol. 6, 295–308.CrossRefGoogle Scholar
  7. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.CrossRefGoogle Scholar
  8. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870–1874.CrossRefGoogle Scholar
  9. Lee, I., Kim, Y.O., Park, S.C., and Chun, J. 2016. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66, 1100–1103.CrossRefGoogle Scholar
  10. Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K., and Knight, R. 2012. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230.CrossRefGoogle Scholar
  11. McFall-Ngai, M., Hadfield, M.G., Bosch, T.C., Carey, H.V., Domazet-Loso, T., Douglas, A.E., Dubilier, N., Eberl, G., Fukami, T., Gilbert, S.F., et al. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 110, 3229–3236.CrossRefGoogle Scholar
  12. Meehan, C.J. and Beiko, R.G. 2014. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol. Evol. 6, 703–713.CrossRefGoogle Scholar
  13. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  14. Schleifer, K.H. and Kandler, O. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407–477.PubMedPubMedCentralGoogle Scholar
  15. Stackebrandt, E. 2014. The Family Lachnospiraceae. In Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., and Thompson, F. (eds.), The Prokaryotes: Firmicutes and Tenericutes, pp. 197–201. Springer Berlin Heidelberg, Berlin, Heidelberg, Germany.Google Scholar
  16. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.CrossRefGoogle Scholar
  17. Tittsler, R.P. and Sandholzer, L.A. 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol. 31, 575–580.PubMedPubMedCentralGoogle Scholar
  18. Ueki, A., Goto, K., Ohtaki, Y., Kaku, N., and Ueki, K. 2017. Description of Anaerotignum aminivorans gen. nov., sp. nov., a strictly anaerobic, amino-acid-decomposing bacterium isolated from a methanogenic reactor, and reclassification of Clostridium propionicum, Clostridium neopropionicum and Clostridium lactatifermentans as species of the genus Anaerotignum. Int. J. Syst. Evol. Microbiol. 67, 4146–4153.CrossRefGoogle Scholar
  19. Van der Wielen, P.W., Rovers, G.M., Scheepens, J.M., and Biesterveld, S. 2002. Clostridium lactatifermen tans sp. nov., a lactateermenting anaerobe isolated from the caeca of a chicken. Int. J. Syst. Evol. Microbiol. 52, 921–925.PubMedGoogle Scholar
  20. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  • Seung-Hyeon Choi
    • 1
  • Ji-Sun Kim
    • 1
  • Jam-Eon Park
    • 1
  • Keun Chul Lee
    • 1
  • Mi Kyung Eom
    • 1
  • Byeong Seob Oh
    • 1
  • Seung Yeob Yu
    • 1
  • Se Won Kang
    • 1
  • Kook-Il Han
    • 1
  • Min Kuk Suh
    • 1
  • Dong Ho Lee
    • 2
  • Hyuk Yoon
    • 2
  • Byung-Yong Kim
    • 3
  • Je Hee Lee
    • 3
  • Ju Huck Lee
    • 1
  • Jung-Sook Lee
    • 1
    • 4
    Email author
  • Seung-Hwan Park
    • 1
    Email author
  1. 1.Korean Collection for Type CulturesKorea Research Institute of Bioscience and Biotechnology (KRIBB)JeongeupRepublic of Korea
  2. 2.Seoul National University Bundang HospitalSeongnamRepublic of Korea
  3. 3.ChunLab, Inc.SeoulRepublic of Korea
  4. 4.University of Science and Technology (UST)DaejeonRepublic of Korea

Personalised recommendations