Isolation, cultivation, and genome analysis of proteorhodopsin-containing SAR116-clade strain Candidatus Puniceispirillum marinum IMCC1322

  • Junhak Lee
  • Kae Kyoung Kwon
  • Seung-Il Lim
  • Jaeho Song
  • Ah Reum Choi
  • Sung-Hyun Yang
  • Kwang-Hwan Jung
  • Jung-Hyun Lee
  • Sung Gyun Kang
  • Hyun-Myung OhEmail author
  • Jang-Cheon ChoEmail author


Strain IMCC1322 was isolated from a surface water sample from the East Sea of Korea. Based on 16S rRNA analysis, IMCC1322 was found to belong to the OCS28 sub-clade of SAR116. The cells appeared as short vibrioids in logarithmic-phase culture, and elongated spirals during incubation with mitomycin or in aged culture. Growth characteristics of strain IMCC1322 were further evaluated based on genomic information; proteorhodopsin (PR), carbon monoxide dehydro-genase, and dimethylsulfoniopropionate (DMSP)-utilizing enzymes. IMCC1322 PR was characterized as a functional retinylidene protein that acts as a light-driven proton pump in the cytoplasmic membrane. However, the PR-dependent phototrophic potential of strain IMCC1322 was only observed under CO-inhibited and nutrient-limited culture conditions. A DMSP-enhanced growth response was observed in addition to cultures grown on C1 compounds like methanol, formate, and methane sulfonate. Strain IMCC1322 cultivation analysis revealed biogeochemical processes characteristic of the SAR116 group, a dominant member of the microbial community in euphotic regions of the ocean. The polyphasic taxonomy of strain IMCC1322 is given as Candidatus Puniceis-pirillum marinum, and was confirmed by chemotaxonomic tests, in addition to 16S rRNA phylogeny and cultivation analyses.


Canididatus Puniceispirillum marinum carbon monoxide dimethylsulfoniopropionate light-emitting diode mitomycin C proteorhodopsin SAR116 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the Marine Biotechnology Program of the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (MOF) [No. 20180430]; and by the Korea National Research Fund [NRF-2017R1D1A1B03034706].

Supplementary material

12275_2019_9001_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1.06 MB.


  1. Balashov, S.P. and Lanyi, J.K. 2007. Xanthorhodopsin: Proton pump with a carotenoid antenna. Cell. Mol. Life Sci. 64, 2323–2328.CrossRefGoogle Scholar
  2. Bano, N. and Hollibaugh, J.T. 2002. Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl. Environ. Microbiol. 68, 505–518.CrossRefGoogle Scholar
  3. Beja, O., Spudich, E.N., Spudich, J.L., Leclerc, M., and DeLong, E.F. 2001. Proteorhodopsin phototrophy in the ocean. Nature 411, 786–789.CrossRefGoogle Scholar
  4. Britschgi, T.B. and Giovannoni, S.J. 1991. Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 57, 1707–1713.Google Scholar
  5. Chin, B.Y. and Otterbein, L.E. 2009. Carbon monoxide is a poison… to microbes! CO as a bactericidal molecule. Curr. Opin. Pharmacol. 9, 490–500.CrossRefGoogle Scholar
  6. Cho, J.C. and Giovannoni, S.J. 2004. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gamma-proteobacteria. Appl. Environ. Microbiol. 70, 432–440.CrossRefGoogle Scholar
  7. Cho, J.C. and Giovannoni, S.J. 2006. Pelagibaca bermudensis gen. nov., sp. nov., a novel marine bacterium within the Roseobacter clade in the order Rhodobacterales. Int. J. Syst. Evol. Microbiol. 56, 855–859.CrossRefGoogle Scholar
  8. Choo, Y.J., Lee, K., Song, J., and Cho, J.C. 2007. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum ‘Verrucomicrobia’. Int. J. Syst. Evol. Microbiol. 57, 532–537.CrossRefGoogle Scholar
  9. Connon, S.A. and Giovannoni, S.J. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68, 3878–3885.CrossRefGoogle Scholar
  10. Douglas, E. 1967. Carbon monoxide solubilities in sea water. J. Phys. Chem. 71, 1931–1933.CrossRefGoogle Scholar
  11. Dupont, C.L., Rusch, D.B., Yooseph, S., Lombardo, M.J., Richter, R.A., Valas, R., Novotny, M., Yee-Greenbaum, J., Selengut, J.D., Haft, D.H., et al. 2012. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 6, 1186- 1199.Google Scholar
  12. Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, S.J., Hotz, H.R., Ceric, G., Forslund, K., Eddy, S.R., Sonnhammer, E.L., et al. 2008. The Pfam protein families database. Nucleic Acids Res. 36, D281- D288.Google Scholar
  13. Giovannoni, S.J., Bibbs, L., Cho, J.C., Stapels, M.D., Desiderio, R., Vergin, K.L., Rappe, M.S., Laney, S., Wilhelm, L.J., Tripp, H.J., et al. 2005. Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438, 82–85.CrossRefGoogle Scholar
  14. Giovannoni, S.J., Britschgi, T.B., Moyer, C.L., and Field, K.G. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345, 60–63.CrossRefGoogle Scholar
  15. Giovannoni, S.J. and Rappé, M.S. 2000. Evolution, diversity, and molecular ecology of marine prokaryotes, pp. 47–84. In Kirchman, D.L.E. (ed.), Microbial ecology of the oceans. Wiley-Liss New York, USA.Google Scholar
  16. Gómez-Consarnau, L., Akram, N., Lindell, K., Pedersen, A., Neutze, R., Milton, D.L., González, J.M., and Pinhassi, J. 2010. Proteor-hodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol. 8, e1000358.Google Scholar
  17. Gómez-Consarnau, L., González, J.M., Coll-Llado, M., Gourdon, P., Pascher, T., Neutze, R., Pedros-Alio, C., and Pinhassi, J. 2007. Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445, 210–213.CrossRefGoogle Scholar
  18. González, J.M., Fernández-Gómez, B., Fernàndez-Guerra, A., Gomez-Consarnau, L., Sánchez, O., Coll-Lladó, M., Del Campo, J., Escudero, L., Rodríguez-Martínez, R., Alonso-Saez, L., et al. 2008. Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proc. Natl. Acad. Sci. USA 105, 8724–8729.CrossRefGoogle Scholar
  19. Grote, J., Bayindirli, C., Bergauer, K., Carpintero de Moraes, P., Chen, H., D’Ambrosio, L., Edwards, B., Fernandez-Gómez, B., Hamisi, M., Logares, R., et al. 2011. Draft genome sequence of strain HIMB100, a cultured representative of the SAR116 clade of marine Alphaproteobacteria. Stand. Genomic Sci. 5, 269–278.CrossRefGoogle Scholar
  20. Johnson, E.T., Baron, D.B., Naranjo, B., Bond, D.R., Schmidt-Dan-nert, C., and Gralnick, J.A. 2010. Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping. Appl. Environ. Microbiol. 76, 4123–4129.CrossRefGoogle Scholar
  21. Jorgensen, J.H., Turnidge, J.D., and Washington, J.A. 1999. Antibacterial susceptibility tests: dilution and disk diffusion method, pp. 1526–1543. In Murray, P.R., Baron, E.J., Pfaller, M.A., Tenover, F.C., and Yolken, R.H. (eds.), Manual of clinical microbiology. American Society for Microbiology, Washington, DC, USA.Google Scholar
  22. Kang, I., Oh, H.M., Kang, D., and Cho, J.C. 2013. Genome of a SAR-116 bacteriophage shows the prevalence of this phage type in the oceans. Proc. Natl. Acad. Sci. USA 110, 12343–12348.CrossRefGoogle Scholar
  23. Kim, S.Y., Waschuk, S.A., Brown, L.S., and Jung, K.H. 2008. Screening and characterization of proteorhodopsin color-tuning mutations in Escherichia coli with endogenous retinal synthesis. Bio-chim. Biophys. Acta 1777, 504–513.CrossRefGoogle Scholar
  24. King, G.M. and Weber, C.F. 2007. Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat. Rev. Microbiol. 5, 107–118.CrossRefGoogle Scholar
  25. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhu-kumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., et al. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371.CrossRefGoogle Scholar
  26. Macleod, R.A. 1965. The question of the existence of specific marine bacteria. Bacteriol. Rev. 29, 9–24.Google Scholar
  27. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  28. Moran, M.A., Buchan, A., González, J.M., Heidelberg, J.F., Whitman, W.B., Kiene, R.P., Henriksen, J.R., King, G.M., Belas, R., Fuqua, C., et al. 2004. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432, 910–913.CrossRefGoogle Scholar
  29. Moran, M.A. and Miller, W.L. 2007. Resourceful heterotrophs make the most of light in the coastal ocean. Nat. Rev. Microbiol. 5, 792–800.CrossRefGoogle Scholar
  30. Mullins, T.D., Britschgi, T.B., Krest, R.L., and Giovannoni, S.J. 1995. Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol. Oceanogr. 40, 148–158.CrossRefGoogle Scholar
  31. Noble, R.T. and Fuhrman, J.A. 1998. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol. 14, 113–118.CrossRefGoogle Scholar
  32. Oh, H.M., Kang, I., Lee, K., Jang, Y., Lim, S.I., and Cho, J.C. 2011. Complete genome sequence of strain IMCC9063, belonging to SAR11 subgroup 3, isolated from the Arctic Ocean. J. Bacteriol. 193, 3379–3380.CrossRefGoogle Scholar
  33. Oh, H.M., Kwon, K.K., Kang, I., Kang, S.G., Lee, J.H., Kim, S.J., and Cho, J.C. 2010. Complete genome sequence of “Candidatus Puni-ceispirillum marinum” IMCC1322, a representative of the SAR116 clade in the Alphaproteobacteria. J. Bacteriol. 192, 3240–3241.CrossRefGoogle Scholar
  34. Ohta, K. 1997. Diurnal variations of carbon monoxide concentration in the equatorial Pacific upwelling region. Oceanogr. Lit. Rev. 44, 1258.Google Scholar
  35. Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., and Glockner, F.O. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196.CrossRefGoogle Scholar
  36. Purcell, E.M. 1977. Life at low reynolds number. Am. J. Phys. 45, 3–11.CrossRefGoogle Scholar
  37. Rappé, M.S., Kemp, P.F., and Giovannoni, S.J. 1997. Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina. Limnol. Oceanogr. 42, 811–826.CrossRefGoogle Scholar
  38. Reasoner, D.J. and Geldreich, E.E. 1985. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 49, 1–7.Google Scholar
  39. Reisch, C.R., Moran, M.A., and Whitman, W.B. 2011. Bacterial cata-bolism of dimethylsulfoniopropionate (DMSP). Front. Micro-biol. 2, 172.Google Scholar
  40. Sabehi, G., Loy, A., Jung, K.H., Partha, R., Spudich, J.L., Isaacson, T., Hirschberg, J., Wagner, M., and Beja, O. 2005. New insights into metabolic properties of marine bacteria encoding proteor-hodopsins. PLoS Biol. 3, e273.CrossRefGoogle Scholar
  41. Schwalbach, M.S., Brown, M., and Fuhrman, J.A. 2005. Impact of light on marine bacterioplankton community structure. Aquat. Microb. Ecol. 39, 235–245.CrossRefGoogle Scholar
  42. Spring, S., Lunsdorf, H., Fuchs, B.M., and Tindall, B.J. 2009. The photosynthetic apparatus and its regulation in the aerobic gam-maproteobacterium Congregibacter litoralis gen. nov., sp. nov. PLoS One 4, e4866.CrossRefGoogle Scholar
  43. Steindler, L., Schwalbach, M.S., Smith, D.P., Chan, F., and Giovan-noni, S.J. 2011. Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLoS One 6, e19725.CrossRefGoogle Scholar
  44. Stingl, U., Desiderio, R.A., Cho, J.C., Vergin, K.L., and Giovannoni, S.J. 2007a. The SAR92 clade: an abundant coastal clade of cul-turable marine bacteria possessing proteorhodopsin. Appl. Environ. Microbiol. 73, 2290–2296.CrossRefGoogle Scholar
  45. Stingl, U., Tripp, H.J., and Giovannoni, S.J. 2007b. Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic time series study site. ISME J. 1, 361–371.CrossRefGoogle Scholar
  46. Stubbins, A., Uher, G., Law, C.S., Mopper, K., Robinson, C., and Up-still-Goddard, R.C. 2006. Open-ocean carbon monoxide photoproduction. Deep Sea Res. Part II Top. Stud. Oceanogr. 53, 1695–1705.CrossRefGoogle Scholar
  47. Swofford, D.L. 2002. PAUP: phylogenetic analysis using parsimony, version 4.0b10. Sinauer Associates, Sunderland, MA, USA.Google Scholar
  48. Treusch, A.H., Vergin, K.L., Finlay, L.A., Donatz, M.G., Burton, R.M., Carlson, C.A., and Giovannoni, S.J. 2009. Seasonality and vertical structure of microbial communities in an ocean gyre. ISME J. 3, 1148–1163.CrossRefGoogle Scholar
  49. Vergin, K.L., Rappe, M.S., and Giovannoni, S.J. 2001. Streamlined method to analyze 16S rRNA gene clone libraries. BioTechniques 30, 938–944.CrossRefGoogle Scholar
  50. Walter, J.M., Greenfield, D., Bustamante, C., and Liphardt, J. 2007. Light-powering Escherichia coli with proteorhodopsin. Proc. Natl. Acad. Sci. USA 104, 2408–2412.CrossRefGoogle Scholar
  51. Wang, W.W., Sineshchekov, O.A., Spudich, E.N., and Spudich, J.L. 2003. Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin. J. Biol. Chem. 278, 33985–33991.CrossRefGoogle Scholar
  52. Worden, Z.A. and Not, F. 2008. Ecology and diversity of picoeu-karyotes, pp. 159–205. In Kirchman, D.L.E. (ed.), Microbial ecology of the oceans, 2nd ed. John Wiley & Sons, Inc., New York, USA.CrossRefGoogle Scholar
  53. Yoch, D.C. 2002. Dimethylsulfoniopropionate: Its sources, role in the marine food web, and biological degradation to dimethyl-sulfide. Appl. Environ. Microbiol. 68, 5804–5815.CrossRefGoogle Scholar
  54. Zafiriou, O.C., Andrews, S.S., and Wang, W. 2003. Concordant estimates of oceanic carbon monoxide source and sink processes in the Pacific yield a balanced global “blue‐water” CO budget. Global Biogeochem. Cycles 17, 1015.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  • Junhak Lee
    • 1
    • 2
  • Kae Kyoung Kwon
    • 3
  • Seung-Il Lim
    • 4
  • Jaeho Song
    • 5
  • Ah Reum Choi
    • 6
  • Sung-Hyun Yang
    • 3
  • Kwang-Hwan Jung
    • 6
  • Jung-Hyun Lee
    • 3
  • Sung Gyun Kang
    • 3
  • Hyun-Myung Oh
    • 1
    Email author
  • Jang-Cheon Cho
    • 5
    Email author
  1. 1.Institute of Liberal Arts EducationPukyong National UniversityBusanRepublic of Korea
  2. 2.Korea Marine Equipment Research InstituteBusanRepublic of Korea
  3. 3.Marine Biotechnology Research DivisionKorea Institute of Ocean Science & TechnologyBusanRepublic of Korea
  4. 4.Cell Biotech, Co., Ltd.GimpoRepublic of Korea
  5. 5.Division of Biology and Ocean SciencesInha UniversityIncheonRepublic of Korea
  6. 6.Department of Life Science and Interdisciplinary Program of Integrated BiotechnologySogang UniversitySeoulRepublic of Korea

Personalised recommendations