Characteristics of the gut microbiota colonization, inflammatory profile, and plasma metabolome in intrauterine growth restricted piglets during the first 12 hours after birth

  • Shimeng Huang
  • Na Li
  • Cong Liu
  • Tiantian Li
  • Wei Wang
  • Lili Jiang
  • Zhen Li
  • Dandan Han
  • Shiyu Tao
  • Junjun WangEmail author


Intrauterine growth restriction (IUGR) predisposes newborns to inflammatory and metabolic disturbance. Disequilibrium of gut microbiota in early life has been implicated in the incidence of inflammation and metabolic diseases in adulthood. This study aimed to investigate the difference in gut microbiota colonization, cytokines and plasma metabolome between IUGR and normal birth weight (NBW) piglets in early life. At birth, reduced (P < 0.05) body, jejunum, and ileum weights, as well as decreased (P < 0.05) small intestinal villi and increased (P < 0.05) ileal crypt depth were observed in IUGR piglets compared with their NBW counterparts. Imbalanced inflammatory and plasma metabolome profile was observed in IUGR piglets. Furthermore, altered metabolites were mainly involved in fatty acid metabolism and inflammatory response. At 12 h after birth and after suckling colostrum, reduced (P < 0.05) postnatal growth and the small intestinal maturation retardation (P < 0.05) continued in IUGR piglets in comparison with those in NBW littermates. Besides, the gut microbiota structure was significantly altered by IUGR. Importantly, the disruption of the inflammatory profile and metabolic status mainly involved the pro-inflammatory cytokines (IL-1β and IFN-γ) and amino acid metabolism. Moreover, spearman correlation analysis showed that the increased abundance of Escherichia-Shigella and decreased abundance of Clostridium_sensu_stricto_1 in IUGR piglets was closely associated with the alterations of slaughter weight, intestinal morphology, inflammatory cytokines, and plasma metabolites. Collectively, IUGR significantly impairs small intestine structure, modifies gut microbiota colonization, and disturbs inflammatory and metabolic profiles during the first 12 h after birth. The unbalanced gut microbiota mediated by IUGR contributes to the development of inflammation and metabolic diseases.


intrauterine growth restriction piglets gut microbiota inflammatory cytokines plasma metabolomics 



We thank the Mianyang New-hope Livestock Farming Co. Ltd in Sichuan province, China, for the assistance in this study. This work was supported by the National Natural Science Foundation of China (31630074), the Beijing Municipal Natural Science Foundation (S170001), the National Key Research and Development Program of China (2016YFD-0500506 and 2018YDF0501002), the 111 Project (B16044), Jinxinnong Animal Science Developmental Foundation and Hunan Co-Innovation Center of Animal Production Safety, CICAPS.

Supplementary material


  1. Abrams, G.D., Bauer, H., and Sprinz, H. 1963. Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. Lab. Invest. 12, 355–364.Google Scholar
  2. Amu, S., Hahn-Zoric, M., Malik, A., Ashraf, R., Zaman, S., Kjellmer, I., Hagberg, H., Padyukov, L., and Hanson, L.Å. 2006. Cytokines in the placenta of Pakistani newborns with and without intrauterine growth retardation. Pediatr. Res. 59, 254–258.CrossRefGoogle Scholar
  3. Ardissone, A.N., de la Cruz, D.M., Davis-Richardson, A.G., Rechcigl, K.T., Li, N., Drew, J.C., Murgas-Torrazza, R., Sharma, R., Hudak, M.L., Triplett, E.W., et al. 2014. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS One 9, e90784.CrossRefGoogle Scholar
  4. Arrieta, M.C., Stiemsma, L.T., Amenyogbe, N., Brown, E.M., and Finlay, B. 2014. The intestinal microbiome in early life: health and disease. Front. Immunol. 5, 427.CrossRefGoogle Scholar
  5. Aw, T.Y. 2005. Intestinal glutathione: determinant of mucosal peroxide transport, metabolism, and oxidative susceptibility. Toxicol. Appl. Pharmacol. 204, 320–328.CrossRefGoogle Scholar
  6. Benjamini, Y. and Hochberg, Y. 1995. Controlling the false discovery rate — a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B Met. 57, 289–300.Google Scholar
  7. Bouskra, D., Brézillon, C., Berard, M., Werts, C., Varona, R., Boneca, I.G., and Eberl, G. 2008. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510.CrossRefGoogle Scholar
  8. Briana, D.D., Liosi, S., Gourgiotis, D., Boutsikou, M., Marmarinos, A., Baka, S., Hassiakos, D., and Malamitsi-Puchner, A. 2012. Fetal concentrations of the growth factors TGF-α and TGF-β1 in relation to normal and restricted fetal growth at term. Cytokine 60, 157–161.CrossRefGoogle Scholar
  9. Cao, J., Li, M., Chen, J., Liu, P., and Li, Z. 2016. Effects of MeJA on Arabidopsis metabolome under endogenous JA deficiency. Sci. Rep. 6, 37674.CrossRefGoogle Scholar
  10. Castanys-Muñoz, E., Martin, M.J., and Vazquez, E. 2016. Building a beneficial microbiome from birth. Adv. Nutr. 7, 323–330.CrossRefGoogle Scholar
  11. Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D.S., and Xia, J. 2018. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 46, W486–W494.CrossRefGoogle Scholar
  12. D’Inca, R., Kloareg, M., Gras-Le Guen, C., and Le Huërou-Luron, I. 2010. Intrauterine growth restriction modifies the developmental pattern of intestinal structure, transcriptomic profile, and bacterial colonization in neonatal pigs. J. Nutr. 140, 925–931.CrossRefGoogle Scholar
  13. Desir-Vigne, A., Haure-Mirande, V., de Coppet, P., Darmaun, D., Le Drean, G., and Segain, J.P. 2018. Perinatal supplementation of 4-phenylbutyrate and glutamine attenuates endoplasmic reticulum stress and improves colonic epithelial barrier function in rats born with intrauterine growth restriction. J. Nutr. Biochem. 55, 104–112.CrossRefGoogle Scholar
  14. Dessi, A., Ottonello, G., and Fanos, V. 2012. Physiopathology of intrauterine growth retardation: from classic data to metabolomics. J. Matern. Fetal Neonatal Med. 25, 13–18.CrossRefGoogle Scholar
  15. Drago, L., Toscano, M., Rodighiero, V., De Vecchi, E., and Mogna, G. 2012. Cultivable and pyrosequenced fecal microflora in centenarians and young subjects. J. Clin. Gastroenterol. 46 Suppl, S81–84.CrossRefGoogle Scholar
  16. Escobedo, G., López-Ortiz, E., and Torres-Castro, I. 2014. Gut microbiota as a key player in triggering obesity, systemic inflammation and insulin resistance. Rev. Invest. Clin. 66, 450–459.Google Scholar
  17. Fanca-Berthon, P., Hoebler, C., Mouzet, E., David, A., and Michel, C. 2010. Intrauterine growth restriction not only modifies the cecocolonic microbiota in neonatal rats but also affects its activity in young adult rats. J. Pediatr. Gastroenterol. Nutr. 51, 402–413.CrossRefGoogle Scholar
  18. Ferenc, K., Pietrzak, P., Godlewski, M.M., Piwowarski, J., Kilianczyk, R., Guilloteau, P., and Zabielski, R. 2014. Intrauterine growth retarded piglet as a model for humans-studies on the perinatal development of the gut structure and function. Reprod. Biol. 14, 51–60.CrossRefGoogle Scholar
  19. Foxx-Orenstein, A.E. and Chey, W.D. 2012. Manipulation of the gut microbiota as a novel treatment strategy for gastrointestinal disorders. Am. J. Gastroenterol. Suppl. 1, 41–46.CrossRefGoogle Scholar
  20. Gibson, G.R., Probert, H.M., Loo, J.V., Rastall, R.A., and Roberfroid, M.B. 2004. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev. 17, 259–275.CrossRefGoogle Scholar
  21. Giogha, C., Lung, T.W., Pearson, J.S., and Hartland, E.L. 2014. Inhibition of death receptor signaling by bacterial gut pathogens. Cytokine Growth Factor Rev. 25, 235–243.CrossRefGoogle Scholar
  22. Hong, X., Chen, J., Liu, L., Wu, H., Tan, H., Xie, G., Xu, Q., Zou, H., Yu, W., Wang, L., et al. 2016. Metagenomic sequencing reveals the relationship between microbiota composition and quality of Chinese rice wine. Sci. Rep. 6, 26621.CrossRefGoogle Scholar
  23. Houghteling, P.D. and Walker, W.A. 2015. Why is initial bacterial colonization of the intestine important to infants’ and children’s health? J. Pediatr. Gastroenterol. Nutr. 60, 294–307.CrossRefGoogle Scholar
  24. Hu, L., Liu, Y., Yan, C., Peng, X., Xu, Q., Xuan, Y., Han, F., Tian, G., Fang, Z., Lin, Y., et al. 2015. Postnatal nutritional restriction affects growth and immune function of piglets with intra-uterine growth restriction. Br. J. Nutr. 114, 53–62.CrossRefGoogle Scholar
  25. Hu, L., Peng, X., Chen, H., Yan, C., Liu, Y., Xu, Q., Fang, Z., Lin, Y., Xu, S., Feng, B., et al. 2017. Effects of intrauterine growth retardation and Bacillus subtilis PB6 supplementation on growth performance, intestinal development and immune function of piglets during the suckling period. Eur. J. Nutr. 56, 1753–1765.CrossRefGoogle Scholar
  26. Kelly, D. and Coutts, A.G. 2000. Early nutrition and the development of immune function in the neonate. Proc. Nutr. Soc. 59, 177–185.CrossRefGoogle Scholar
  27. Kundu, P., Blacher, E., Elinav, E., and Pettersson, S. 2017. Our gut microbiome: The evolving inner self. Cell 171, 1481–1493.CrossRefGoogle Scholar
  28. Le Drean, G., Haure-Mirande, V., Ferrier, L., Bonnet, C., Hulin, P., de Coppet, P., and Segain, J.P. 2014. Visceral adipose tissue and leptin increase colonic epithelial tight junction permeability via a RhoA-ROCK-dependent pathway. FASEB J. 28, 1059–1070.CrossRefGoogle Scholar
  29. Li, N., Huang, S., Jiang, L., Wang, W., Li, T., Zuo, B., Li, Z., and Wang, J. 2018. Differences in the gut microbiota establishment and metabolome characteristics between low- and normal-birth-weight piglets during early-life. Front. Microbiol. 9, 1798.CrossRefGoogle Scholar
  30. Li, N., Wang, W., Wu, G., and Wang, J. 2017. Nutritional support for low birth weight infants: insights from animal studies. Br. J. Nutr. 117, 1390–1402.CrossRefGoogle Scholar
  31. Lin, G., Wang, X., Wu, G., Feng, C., Zhou, H., Li, D., and Wang, J. 2014. Improving amino acid nutrition to prevent intrauterine growth restriction in mammals. Amino Acids 46, 1605–1623.CrossRefGoogle Scholar
  32. Loh, K.R., Shrader, R.E., and Zeman, F.J. 1971. Effect of maternal protein deprivation on neonatal intestinal absorption in rats. J. Nutr. 101, 1663–1671.CrossRefGoogle Scholar
  33. Longo, S., Bollani, L., Decembrino, L., Di Comite, A., Angelini, M., and Stronati, M. 2013. Short-term and long-term sequelae in intrauterine growth retardation (IUGR). J. Matern. Fetal Neonatal Med. 26, 222–225.CrossRefGoogle Scholar
  34. Lopetuso, L.R., Scaldaferri, F., Petito, V., and Gasbarrini, A. 2013. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog. 5, 23.CrossRefGoogle Scholar
  35. Madan, J.C., Salari, R.C., Saxena, D., Davidson, L., O’Toole, G.A., Moore, J.H., Sogin, M.L., Foster, J.A., Edwards, W.H., Palumbo, P., et al. 2012. Gut microbial colonisation in premature neonates predicts neonatal sepsis. Arch. Dis. Child. Fetal Neonatal Ed. 97, F456–F462.CrossRefGoogle Scholar
  36. Masella, A.P., Bartram, A.K., Truszkowski, J.M., Brown, D.G., and Neufeld, J.D. 2012. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13, 31.CrossRefGoogle Scholar
  37. McElrath, T.F., Allred, E.N., Van Marter, L., Fichorova, R.N., Leviton, A., and ELGAN Study Investigators. 2013. Perinatal systemic inflammatory responses of growth-restricted preterm newborns. Acta Paediatr. 102, e439–e442.CrossRefGoogle Scholar
  38. McIntire, D.D., Bloom, S.L., Casey, B.M., and Leveno, K.J. 1999. Birth weight in relation to morbidity and mortality among newborn infants. N. Engl. J. Med. 340, 1234–1238.CrossRefGoogle Scholar
  39. Osborn, O. and Olefsky, J.M. 2012. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18, 363–374.CrossRefGoogle Scholar
  40. Pallotto, E.K. and Kilbride, H.W. 2006. Perinatal outcome and later implications of intrauterine growth restriction. Clin. Obstet. Gynecol. 49, 257–269.CrossRefGoogle Scholar
  41. Qiu, X.S., Huang, T.T., Shen, Z.Y., Deng, H.Y., and Ke, Z.Y. 2005. Effect of early nutrition on intestine development of intrauterine growth retardation in rats and its correlation to leptin. World J. Gastroenterol. 11, 4419–4422.CrossRefGoogle Scholar
  42. Rogers, L.K. and Velten, M. 2011. Maternal inflammation, growth retardation, and preterm birth: Insights into adult cardiovascular disease. Life Sci. 89, 417–421.CrossRefGoogle Scholar
  43. Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., and Tuohy, K. 2018. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57, 1–24.CrossRefGoogle Scholar
  44. Saavedra, J.M. and Dattilo, A.M. 2012. Early development of intestinal microbiota: implications for future health. Gastroenterol. Clin. North Am. 41, 717–731.CrossRefGoogle Scholar
  45. Salam, R.A., Das, J.K., and Bhutta, Z.A. 2014. Impact of intrauterine growth restriction on long-term health. Curr. Opin. Clin. Nutr. Metab. Care 17, 249–254.CrossRefGoogle Scholar
  46. Stecher, B. 2015. The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection, pp. 297–320. In Metabolism and bacterial pathogenesis. American Society of Microbiology.Google Scholar
  47. Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., et al. 2009. A core gut microbiome in obese and lean twins. Nature 457, 480–484.CrossRefGoogle Scholar
  48. Wang, W., Degroote, J., Van Ginneken, C., Van Poucke, M., Vergauwen, H., Dam, T.M.T., Vanrompay, D., Peelman, L.J., De Smet, S., and Michiels, J. 2016. Intrauterine growth restriction in neonatal piglets affects small intestinal mucosal permeability and mRNA expression of redox-sensitive genes. FASEB J. 30, 863–873.CrossRefGoogle Scholar
  49. Wang, T., Huo, Y.J., Shi, F., Xu, R.J., and Hutz, R.J. 2005. Effects of intrauterine growth retardation on development of the gastrointestinal tract in neonatal pigs. Biol. Neonate 88, 66–72.CrossRefGoogle Scholar
  50. Wang, X., Wu, W., Lin, G., Li, D., Wu, G., and Wang, J. 2010. Temporal proteomic analysis reveals continuous impairment of intestinal development in neonatal piglets with intrauterine growth restriction. J. Proteome Res. 9, 924–935.CrossRefGoogle Scholar
  51. Wang, Y., Zhang, L., Zhou, G., Liao, Z., Ahmad, H., Liu, W., and Wang, T. 2012. Dietary L-arginine supplementation improves the intestinal development through increasing mucosal Akt and mammalian target of rapamycin signals in intra-uterine growth retarded piglets. Br. J. Nutr. 108, 1371–1381.CrossRefGoogle Scholar
  52. Wang, X., Zhu, Y., Feng, C., Lin, G., Wu, G., Li, D., and Wang, J. 2018. Innate differences and colostrum-induced alterations of jejunal mucosal proteins in piglets with intra-uterine growth restriction. Br. J. Nutr. 119, 734–747.CrossRefGoogle Scholar
  53. Wu, G. 1998. Intestinal mucosal amino acid catabolism. J. Nutr. 128, 1249–1252.CrossRefGoogle Scholar
  54. Wu, G., Bazer, F.W., Wallace, J.M., and Spencer, T.E. 2006. Board-invited review: intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci. 84, 2316–2337.CrossRefGoogle Scholar
  55. Yi, D., Li, B., Hou, Y., Wang, L., Zhao, D., Chen, H., Wu, T., Zhou, Y., Ding, B., and Wu, G. 2018. Dietary supplementation with an amino acid blend enhances intestinal function in piglets. Amino Acids 50, 1089–1100.CrossRefGoogle Scholar
  56. Ying, Z., Zhang, H., Su, W., Zhou, L., Wang, F., Li, Y., Zhang, L., and Wang, T. 2017. Dietary methionine restriction alleviates hyperglycemia in pigs with intrauterine growth restriction by enhancing hepatic protein kinase B signaling and glycogen synthesis. J. Nutr. 147, 1892–1899.CrossRefGoogle Scholar
  57. Zhang, L.L., Zhang, H., Li, Y., and Wang, T. 2017. Effects of medium-chain triglycerides on intestinal morphology and energy metabolism of intrauterine growth retarded weanling piglets. Arch. Anim. Nutr. 71, 231–245.CrossRefGoogle Scholar
  58. Zhang, H., Zhao, F., Peng, A., Dong, L., Wang, M., Yu, L., Loor, J.J., and Wang, H. 2018. Effects of dietary L-arginine and N-carbamylglutamate supplementation on intestinal integrity, immune function, and oxidative status in intrauterine-growth-retarded suckling lambs. J. Agric. Food Chem. 66, 4145–4154.CrossRefGoogle Scholar
  59. Zhong, X., Wang, T., Zhang, X., and Li, W. 2010. Heat shock protein 70 is upregulated in the intestine of intrauterine growth retardation piglets. Cell Stress Chaperones 15, 335–342.CrossRefGoogle Scholar
  60. Zhu, Y., Li, T., Huang, S., Wang, W., Dai, Z., Feng, C., Wu, G., and Wang, J. 2018. Maternal L-glutamine supplementation during late gestation alleviates intrauterine growth restriction-induced intestinal dysfunction in piglets. Amino Acids 50, 1289–1299.CrossRefGoogle Scholar
  61. Zhu, Y., Wang, W., Yuan, T., Fu, L., Zhou, L., Lin, G., Zhao, S., Zhou, H., Wu, G., and Wang, J. 2017. MicroRNA-29a mediates the impairment of intestinal epithelial integrity induced by intrauterine growth restriction in pig. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G434–G442.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  • Shimeng Huang
    • 1
    • 2
  • Na Li
    • 1
    • 2
  • Cong Liu
    • 1
  • Tiantian Li
    • 1
    • 2
  • Wei Wang
    • 1
    • 2
  • Lili Jiang
    • 1
  • Zhen Li
    • 1
    • 3
  • Dandan Han
    • 1
    • 2
  • Shiyu Tao
    • 1
    • 2
  • Junjun Wang
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingP. R. China
  2. 2.Beijing Advanced Innovation Center for Food Nutrition and Human HealthChina Agricultural UniversityBeijingP. R. China
  3. 3.State Key Laboratory of Plant Physiology and BiochemistryChina Agricultural UniversityBeijingP. R. China

Personalised recommendations