Mutants defective in the production of encapsulin show a tan-phase-locked phenotype in Myxococcus xanthus

  • Dohee Kim
  • Juo Choi
  • Sunjin Lee
  • Hyesook Hyun
  • Kyoung Lee
  • Kyungyun ChoEmail author


Myxococcus xanthus, a myxobacterium, displays phase variation between yellow phase and tan phase. We found that deletion of the encA gene encoding encapsulin and the encF gene encoding a metalloprotease causes formation of tan colonies that never transform into yellow colonies. The encA and encF mutants were defective in the production of DK-xanthene and myxovirescin. They did not produce extracellular polysaccharides; hence, the cells did not aggregate in liquid and showed reduced swarming on agar plates. The mutants had defective sporulation, but were rescued extracellularly by wild type cells. All these traits indicate that the encA and encF mutants are likely to be tan-phase-locked, and encapsulin has a close relationship with phase variation in M. xanthus. The encA and encF genes are localized in the same gene cluster, encBAEFG (MXAN_3557~MXAN_3553). Unlike the encA and encF genes, deletion of other genes in the cluster did not show tan-phase-locked phenotype.


myxobacteria Myxococcus xanthus encapsulin phase variation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A3-B03030500).

Supplementary material


  1. Berleman, J.E., Allen, S., Danielewicz, M.A., Remis, J.P., Gorur, A., Cunha, J., Hadi, M.Z., Zusman, D.R., Northen, T.R., Witkowska, H.E., et al. 2014. The lethal cargo of Myxococcus xanthus outer membrane vesicles. Front. Microbiol. 5, 474.CrossRefGoogle Scholar
  2. Berleman, J.E., Chumley, T., Cheung, P., and Kirby, J.R. 2006. Rippling is a predatory behavior in Myxococcus xanthus. J. Bacteriol. 188, 5888–5895.CrossRefGoogle Scholar
  3. Berleman, J.E., Vicente, J.J., Davis, A.E., Jiang, S.Y., Seo, Y.E., and Zusman, D.R. 2011. FrzS regulates social motility in Myxococcus xanthus by controlling exopolysaccharide production. PLoS One 6, e23920.CrossRefGoogle Scholar
  4. Burchard, R.P., Burchard, A.C., and Parish, J.H. 1977. Pigmentation phenotype instability in Myxococcus xanthus. Can. J. Microbiol. 23, 1657–1662.CrossRefGoogle Scholar
  5. Campos, J.M. and Zusman, D.R. 1975. Regulation of development in Myxococcus xanthus: effect of 3′: 5′-cyclicAMP, ADP, and nutrition. Proc. Natl. Acad. Sci. USA 72, 518–522.CrossRefGoogle Scholar
  6. Cho, K. and Zusman, D.R. 1999. AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus. Mol. Microbiol. 34, 268–281.CrossRefGoogle Scholar
  7. Dahl, J.L., Ulrich, C.H., and Kroft, T.L. 2011. Role of phase variation in the resistance of Myxococcus xanthus fruiting bodies to Caenorhabditis elegans predation. J. Bacteriol. 193, 5081.CrossRefGoogle Scholar
  8. Dana, J.R. and Shimkets, L.J. 1993. Regulation of cohesion-dependent cell interactions in Myxococcus xanthus. J. Bacteriol. 175, 3636–3647.CrossRefGoogle Scholar
  9. Dragos, A. and Kovács, Á.T. 2017. The peculiar functions of the bacterial extracellular matrix. Trends Microbiol. 25, 257–266.CrossRefGoogle Scholar
  10. Dziewanowska, K., Settles, M., Hunter, S., Linquist, I., Schilkey, F., and Hartzell, P.L. 2014. Phase variation in Myxococcus xanthus yields cells specialized for iron sequestration. PLoS One 9, e95189.CrossRefGoogle Scholar
  11. Furusawa, G., Dziewanowska, K., Stone, H., Settles, M., and Hartzell, P. 2011. Global analysis of phase variation in Myxococcus xanthus. Mol. Microbiol. 81, 784–804.CrossRefGoogle Scholar
  12. Giessen, T.W. and Silver, P.A. 2017. Widespread distribution of encapsulin nanocompartments reveals functional diversity. Nat. Microbiol. 2, 17029.CrossRefGoogle Scholar
  13. Hodgkin, J. and Kaiser, D. 1979. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): Genes controlling movement of single cells. Mol. Gen. Genet. 171, 167–176.CrossRefGoogle Scholar
  14. Hyun, H., Lee, S., Lee, J.S., and Cho, K. 2018. Genetic and functional analyses of the DKxanthene biosynthetic gene cluster from Myxococcus stipitatus DSM 14675. J. Microbiol. Biotechnol. 28, 1068–1077.Google Scholar
  15. Kahnt, J., Aguiluz, K., Koch, J., Treuner-Lange, A., Konovalova, A., Huntley, S., Hoppert, M., Søgaard-Andersen, L., and Hedderich, R. 2010. Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles. J. Proteome Res. 9, 5197–5208.CrossRefGoogle Scholar
  16. Kaiser, D., Robinson, M., and Kroos, L. 2010. Myxobacteria, polarity, and multicellular morphogenesis. Cold Spring Harb. Perspect. Biol. 2, a000380.CrossRefGoogle Scholar
  17. Kim, D., Chung, J., Hyun, H., Lee, C., Lee, K., and Cho, K. 2009. Operon required for fruiting body development in Myxococcus xanthus. J. Microbiol. Biotechnol. 19, 1288–1294.Google Scholar
  18. Konovalova, A., Petters, T., and Søgaard-Andersen, L. 2010. Extracellular biology of Myxococcus xanthus. FEMS Microbiol. Rev. 34, 89–106.CrossRefGoogle Scholar
  19. Kroos, L., Kuspa, A., and Kaiser, D. 1986. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 117, 252–266.CrossRefGoogle Scholar
  20. Laue, B.E. and Gill, R.E. 1994. Use of a phase variation-specific promoter of Myxococcus xanthus in a strategy for isolating a phase-locked mutant. J. Bacteriol. 176, 5341–5349.CrossRefGoogle Scholar
  21. Laue, B.E. and Gill, R.E. 1995. Using a phase-locked mutant of Myxococcus xanthus to study the role of phase variation in development. J. Bacteriol. 177, 4089–4096.CrossRefGoogle Scholar
  22. Lee, C., Chung, J., Kim, J., and Cho, K. 2006. Identification of a gene required for gliding motility in Myxococcus xanthus. J. Microbiol. Biotechnol. 16, 771–777.Google Scholar
  23. Li, Y., Sun, H., Ma, X., Lu, A., Lux, R., Zusman, D., and Shi, W. 2003. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100, 5443–5448.CrossRefGoogle Scholar
  24. Lu, A., Cho, K., Black, W.P., Duan, X.Y., Lux, R., Yang, Z., Kaplan, H.B., Zusman, D.R., and Shi, W. 2005. Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol. Microbiol. 55, 206–220.CrossRefGoogle Scholar
  25. Mauriello, E.M., Mignot, T., Yang, Z., and Zusman, D.R. 2010. Gliding motility revisited: how do the myxobacteria move without flagella? Microbiol. Mol. Biol. Rev. 74, 229–249.CrossRefGoogle Scholar
  26. McHugh, C.A., Fontana, J., Nemecek, D., Cheng, N., Aksyuk, A.A., Heymann, J.B., Winkler, D.C., Lam, A.S., Wall, J.S., Steven, A.C., et al. 2014. A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress. EMBO J. 33, 1896–1911.CrossRefGoogle Scholar
  27. Meiser, P., Bode, H.B., and Muller, R. 2006. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc. Natl. Acad. Sci. USA 103, 19128–19133.CrossRefGoogle Scholar
  28. Ramaswamy, S., Dworkin, M., and Downard, J. 1997. Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding. J. Bacteriol. 179, 2863–2871.CrossRefGoogle Scholar
  29. Reichenbach, H. 2005. Myxococcales, pp. 1059–1144. In Brenner, D.J., Krieg, N.R., Staley, J.T., and Garrity, G.M. (eds.), Bergey’s manual of systematic bacteriology, 2nd ed. Bergey’s Manual Trust, East Lansing, MI., USA.Google Scholar
  30. Sambrook, J., Fritsch, E.F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y., USA.Google Scholar
  31. Shi, W., Köhler, T., and Zusman, D.R. 1994. Motility and chemotaxis in Myxococcus xanthus. Methods Mol. Genet. 3, 258–269.Google Scholar
  32. Shi, W. and Zusman, D.R. 1993. The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl. Acad. Sci. USA 90, 3378–3382.CrossRefGoogle Scholar
  33. Shimkets, L.J. 1986. Correlation of energy-dependent cell cohesion with social motility in Myxococcus xanthus. J. Bacteriol. 166, 837–841.CrossRefGoogle Scholar
  34. Shin, H., Youn, J., An, D., and Cho, K. 2013. Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Korean J. Microbiol. Biotechnol. 41, 44–51.CrossRefGoogle Scholar
  35. Sutter, M., Boehringer, D., Gutmann, S., Günther, S., Prangishvili, D., Loessner, M.J., Stetter, K.O., Weber-Ban, E., and Ban, N. 2008. Structural basis of enzyme encapsulation into a bacterial nano-compartment. Nat. Struct. Mol. Biol. 15, 939–947.CrossRefGoogle Scholar
  36. Vlamakis, H.C., Kirby, J.R., and Zusman, D.R. 2004. The Che4 pathway of Myxococcus xanthus regulates type IV pilus-mediated motility. Mol. Microbiol. 52, 1799–1811.CrossRefGoogle Scholar
  37. Wang, Y., Li, X., Zhang, W., Zhou, X., and Li, Y.Z. 2014. The groEL2 gene, but not groEL1, is required for biosynthesis of the secondary metabolite myxovirescin in Myxococcus xanthus DK1622. Microbiology 160, 488–495.CrossRefGoogle Scholar
  38. Xiao, Y., Wei, X., Ebright, R., and Wall, D. 2011. Antibiotic production by myxobacteria plays a role in predation. J. Bacteriol. 193, 4626–4633.CrossRefGoogle Scholar
  39. Zusman, D.R., Scott, A.E., Yang, Z., and Kirby, J.R. 2007. Chemosensory pathways, motility and development in Myxococcus xanthus. Nat. Rev. Microbiol. 5, 862–872.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  • Dohee Kim
    • 1
  • Juo Choi
    • 1
  • Sunjin Lee
    • 1
  • Hyesook Hyun
    • 1
  • Kyoung Lee
    • 2
  • Kyungyun Cho
    • 1
    Email author
  1. 1.Department of BiotechnologyHoseo UniversityAsanRepublic of Korea
  2. 2.Department of MicrobiologyChangwon National UniversityChangwonRepublic of Korea

Personalised recommendations