Paenibacillus psychroresistens sp. nov., isolated from the soil of an Arctic glacial retreat

  • In-Tae Cha
  • Eui-Sang Cho
  • Yoo Kyung Lee
  • Seong Woon RohEmail author
  • Myung-Ji SeoEmail author


Strain ML311-T8T was isolated from a glacial retreat area in Svalbard, Norway, and was taxonomically characterized by a polyphasic approach. Upon phylogenetic analysis, strain ML311-T8T was clustered with Paenibacillus arcticus MME2_ R6T and P. contaminans CKOBP-6T with 98.3-98.6 and 93.5-93.9% 16S rRNA gene sequence similarities, respectively. DNA-DNA hybridization values between strain ML311-T8T and P. arcticus MME2_R6T was 19.9%. The genomic DNA G+C content was 41.1 mol%. The isolated strain was Gram-stain-positive, strictly aerobic and rod-shaped, and grew in 0-0.5% (w/v) NaCl, at 4-23°C and pH 6.0-10.0, with optimal growth in 0% (w/v) NaCl, at 20°C and pH 7.0-8.0. The predominant respiratory quinone of strain ML311-T8T was MK-7 and the major fatty acids were anteiso-C15:0 and C16:0. The polar lipids of strain ML311-T8T were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, three unidentified amino lipids, and three unidentified lipids. On the basis of polyphasic taxonomic analysis, the strain ML311-T8T is proposed to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus psychroresistens sp. nov. is proposed. The type strain is ML311-T8T (= KCCM 43190T = JCM 31243T).


Paenibacillus psychroresistens arctic isolation polyphasic taxonomy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8666_MOESM1_ESM.pdf (1.6 mb)
Supplementary material, approximately 228 KB.


  1. Ash, C., Farrow, J.A.E., Wallbanks, S., and Collinds, M.D. 1991. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett. Appl. Microbiol. 13, 202–206.CrossRefGoogle Scholar
  2. Ash, C., Priest, F.G., and Collins, M.D. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64, 253–260.CrossRefGoogle Scholar
  3. Ash, C., Priest, F.G., and Collins, M.D. 1994. Paenibacillus gen. nov. and Paenibacillus polymyxa comb. nov. In validation of the publication of new names and new combinations previously effectively published outside the IJSB, list no. 51. Int. J. Syst. Bacteriol. 44, 852.CrossRefGoogle Scholar
  4. Bauer, A.W., Kirby, M.M., Sherris, J.C., and Truck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496.CrossRefGoogle Scholar
  5. Benson, H.J. 2002. Microbiological applications: a laboratory manual in general microbiology. McGraw-Hill, New York, USA.Google Scholar
  6. Cha, I.T., Cho, E.S., Yoo, Y., Seok, Y.J., Park, I., Lim, H.S., Park, J.M., Roh, S.W., Nam, Y.D., Choi, H.J., et al. 2017. Paenibacillus arcticus sp. nov., isolated from Arctic soil. Int. J. Syst. Evol. Microbiol. 67, 4385–4389.CrossRefGoogle Scholar
  7. Chou, J.H., Lee, J.H., Lin, M.C., Chang, P.S., Arun, A.B., Young, C.C., and Chen, W.M. 2009. Paenibacillus contaminans sp. nov., isolated from a contaminated laboratory plate. Int. J. Syst. Evol. Microbiol. 59, 125–129.CrossRefGoogle Scholar
  8. Collins, M.D. and Jones, D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45, 316–354.Google Scholar
  9. Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 38, 224–229.CrossRefGoogle Scholar
  10. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefGoogle Scholar
  11. Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. 1994. Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, USA.Google Scholar
  12. Heyndrickx, M., Vandemeulebroecke, K., Scheldeman, P., Kersters, K., De Vos, P., Logan, N.A., Aziz, A.M., Ali, N., and Berkeley, R.C.W. 1996. A polyphasic reassessment of the genus Paenibacillus, reclassification of Bacillus lautus (Nakamura 1984) as Paenibacillus lautus comb. nov. and of Bacillus peoriae (Montefusco et al. 1993) as Paenibacillus peoriae comb. nov., and emended descriptions of P. lautus and of P. peoriae. Int. J. Syst. Bacteriol. 46, 988–1003.CrossRefGoogle Scholar
  13. Kämpfer, P., Rosselló-Mora, R., Falsen, E., Busse, H.J., and Tindall, B.J. 2006. Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkon gensis sp. nov. Int. J. Syst. Evol. Microbiol. 56, 781–786.CrossRefGoogle Scholar
  14. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.CrossRefGoogle Scholar
  15. Kluge, A.G. and Farris, J.S. 1969. Quantitative phyletics and the evolution of anurans. Syst. Biol. 18, 1–32.CrossRefGoogle Scholar
  16. Komagata, K. and Suzuki, K.I. 1987. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol. 19, 161–207.CrossRefGoogle Scholar
  17. Kovacs, N. 1956. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178, 703.CrossRefGoogle Scholar
  18. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.CrossRefGoogle Scholar
  19. Lagesen, K., Hallin, P.F., Rødland, E., Stærfeldt, H.H., Rognes, T., Ussery, D.W. 2007. RNammer: consistent annotation of rRNA genes in genomic sequences. Nucleic Acids Res. 35, 3100–3108.CrossRefGoogle Scholar
  20. Miller, L.T. 1982. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J. Clin. Microbiol. 16, 584–586.Google Scholar
  21. Minnikin, D.E., O'Donnell, A.G., and Goodfellow, M. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  22. Montes, M.J., Mercadé, E., Bozal, N., and Guinea, J. 2004. Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int. J. Syst. Evol. Microbiol. 54, 1521–1526.CrossRefGoogle Scholar
  23. Pruesse, E., Peplies, J., and Glockner, F.O. 2012. SINA: accurate highthroughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829.CrossRefGoogle Scholar
  24. Saitou, N. and Nei, M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.Google Scholar
  25. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI technical note 101. MIDI Inc, Newark, DE, USA.Google Scholar
  26. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L.K., and Komagata, K. 1997. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol. 47, 289–298.CrossRefGoogle Scholar
  27. Tang, Q.Y., Yang, N., Wang, J., Xie, Y.Q., Ren, B., Zhou, Y.G., Gu, M.Y., Mao, J., Li, W.J., Shi, Y.H., et al. 2011. Paenibacillus algorifonticola sp. nov., isolated from a cold spring. Int. J. Syst. Evol. Microbiol. 61, 2167–2172.CrossRefGoogle Scholar
  28. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.CrossRefGoogle Scholar
  29. Tittsler, R.P. and Sandholzer, L.A. 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol. 31, 575–580.Google Scholar
  30. Xiang, W., Wang, G., Wang, Y., Yao, R., Zhang, F., Wang, R., Wang, D., and Zheng, S. 2014. Paenibacillus selenii sp. nov., isolated from selenium mineral soil. Int. J. Syst. Evol. Microbiol. 64, 2662–2667.CrossRefGoogle Scholar
  31. Yao, R., Wang, R., Wang, D., Su, J., Zheng, S., and Wang, G. 2014. Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int. J. Syst. Evol. Microbiol. 64, 805–811.CrossRefGoogle Scholar
  32. Yokota, A., Ningsih, F., Nurlaili, D.G., Sakai, Y., Yabe, S., Oetari, A., Santoso, I., and Sjamsuridzal, W. 2016. Paenibacillus cisolokensis sp. nov., isolated from litter of a geyser. Int. J. Syst. Evol. Microbiol. 66, 1–7.CrossRefGoogle Scholar
  33. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.CrossRefGoogle Scholar
  34. Zhou, Y., Gao, S., Wei, D.Q., Yang, L.L., Huang, X., He, J., Zhang, Y.J., Tang, S.K., and Li, W.J. 2012. Paenibacillus thermophilus sp. nov., a novel bacterium isolated from a sediment of hot spring in Fujian province, China. Antonie van Leeuwenhoek 201, 601–609.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  1. 1.Microbiology and Functionality Research GroupWorld Institute of KimchiGwangjuRepublic of Korea
  2. 2.Department of Bioengineering and Nano-BioengineeringGraduate School of Incheon National UniversityIncheonRepublic of Korea
  3. 3.Korea Polar Research InstituteIncheonRepublic of Korea
  4. 4.Division of BioengineeringIncheon National UniversityIncheonRepublic of Korea

Personalised recommendations