Advertisement

Fulvimarina endophytica sp. nov., a novel endophytic bacterium isolated from bark of Sonneratia caseolaris

  • Li TuoEmail author
  • Xiao-Rui Yan
Article

Abstract

A Gram-negative, aerobic, short-rod-shaped, motile (with a terminal flagellum), non-spore-forming bacterium, designated strain 85T, was isolated from a surface-sterilized bark of Sonneratia caseolaris collected from Qinzhou in Guangxi, China and was analyzed using a polyphasic approach to determine its taxonomic position. Strain 85T grew optimally in the presence of 1–2% (w/v) NaCl at 30°C and pH 6.0–7.0. Phylogenetic analysis based on 16S rRNA gene sequence suggested that strain 85T belonged to the genus Fulvimarina and shared the highest 16S rRNA gene sequence similarity with Fulvimarina pelagi HTCC2506T (96.16%). The cell-wall peptidoglycan contained meso-diaminopimelic acid and ubiquinone Q-10 was the predominant respiratory lipoquinone. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified amino lipid, three unidentified phospholipids and six unidentified lipids. The major fatty acid was C18:1ω7c. The DNA G+C content of strain 85T was 65.4 mol%, and the average nucleotide identity and estimated DDH values between strain 85T and the type strain of Fulvimarina pelagi HTCC2506T were 77.3% and 21.7%, respectively. Based on the phylogenetic, phenotypic, and chemotaxonomic analyses, strain 85T should be considered as a novel species of the genus Fulvimarina with the proposed name Fulvimarina endophytica sp. nov., and its type strain is 85T (= KCTC 62717T = CGMCC 1.13665T).

Keywords

Fulvimarina endophytica endophytic bacterium polyphasic approach novel species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (NSFC, Grant no. 81603079), Science and Technology Foundation of Guizhou Province (No. Qian Ke He Jichu[2019]1347) and Youth Science and technology personnal growth project of Guizhou Provincial Education Department (No. Qian Jiao He KY Zi[2016]200).

Supplementary material

References

  1. Cappuccino, J.G. and Sherman, N. 2002. Microbiology: a laboratory manual, 6th ed. Benjamin Cummings Pearson Education, San Francisco, USA.Google Scholar
  2. Cho, J.C. and Giovannoni, S.J. 2003. Fulvimarina pelagi gen. nov., sp. nov., a marine bacterium that forms a deep evolutionary lineage of descent in the order “Rhizobiales”. Int. J. Syst. Evol. Microbiol. 53, 1853–1859.CrossRefGoogle Scholar
  3. Collins, M.D., Pirouz, T., Goodfellow, M., and Minnikin, D.E. 1977. Distribution of menaquinones in actinomycetes and corynebacteria. J. Gen. Microbiol. 100, 221–230.CrossRefGoogle Scholar
  4. Denner, E.B., Smith, G.W., Busse, H.J., Schumann, P., Narzt, T., Polson, S.W., Lubitz, W., and Richardson, L.L. 2003. Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. Int. J. Syst. Evol. Microbiol. 53, 1115–1122.CrossRefGoogle Scholar
  5. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefGoogle Scholar
  6. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.CrossRefGoogle Scholar
  7. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.CrossRefGoogle Scholar
  8. Gonzalez, C., Gutierrez, C., and Ramirez, C. 1978. Halobacterium vallismortis sp. nov., an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can. J. Microbiol. 24, 710–715.CrossRefGoogle Scholar
  9. Guo, L., Tuo, L., Habden, X., Zhang, Y., Liu, J., Jiang, Z., Liu, S., Dilbar, T., and Sun, C. 2015. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int. J. Syst. Evol. Microbiol. 65, 206–213.CrossRefGoogle Scholar
  10. Kelly, K.L. 1964. Inter-society color council-national bureau of standards color name charts illustrated with centroid colors. US Government Printing Office, Washington, DC, USA.Google Scholar
  11. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J. Mol. Evol. 16, 111–120.CrossRefGoogle Scholar
  12. Li, W.J., Xu, P., Schumann, P., Zhang, Y.Q., Pukall, R., Xu, L.H., Stackebrandt, E., and Jiang, C.L. 2007. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int. J. Syst. Evol. Microbiol. 57, 1424–1428.CrossRefGoogle Scholar
  13. Liang, J., Liu, J., and Zhang, X.H. 2015. Jiella aquimaris gen. nov., sp. nov., isolated from offshore surface seawater. Int. J. Syst. Evol. Microbiol. 65, 1127–1132.CrossRefGoogle Scholar
  14. Magee, C.M., Rodeheaver, G., Edgerton, M.T., and Edlich, R.F. 1975. A more reliable Gram staining technic for diagnosis of surgical infections. Am. J. Surg. 130, 341–346.CrossRefGoogle Scholar
  15. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.CrossRefGoogle Scholar
  16. Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W. 2015. Check M: assessing the quality of microbial genomes recovered from isolateds, single cells, and metagenomes. Genome Res. 25, 1043–1055.CrossRefGoogle Scholar
  17. Qin, S., Wang, H.B., Chen, H.H., Zhang, Y.Q., Jiang, C.L., Xu, L.H., and Li, W.J. 2008. Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. Int. J. Syst. Evol. Microbiol. 58, 2525–2528.CrossRefGoogle Scholar
  18. Rathsack, K., Reitner, J., Stackebrandt, E., and Tindall, B.J. 2011. Reclassification of Aurantimonas altamirensis (Jurado et al. 2006), Aurantimonas ureilytica (Weon et al. 2007) and Aurantimonas frigidaquae (Kim et al. 2008) as members of a new genus, Aureimonas gen.nov., as Aureimonas altamirensis gen. nov., comb. nov., Aureimonas ureilytica comb. nov. and Aureimonas frigidaquae comb. nov., and emended descriptions of the genera Aurantimonas and Fulvimarina. Int. J. Syst. Evol. Microbiol. 61, 2722–2728.CrossRefGoogle Scholar
  19. Ren, F., Zhang, L., Song, L., Xu, S., Xi, L., Huang, L., Huang, Y., and Dai, X. 2014. Fulvimarina manganoxydans sp. nov., isolated from a deep-sea hydrothermal plume in the south-west Indian ocean. Int. J. Syst. Evol. Microbiol. 64, 2920–2925.CrossRefGoogle Scholar
  20. Richter, M. and Rosselló-Móra, R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106, 19126–19131.CrossRefGoogle Scholar
  21. Rivas, R., Sánchez-Márquez, S., Mateos, P.F., Martínez-Molina, E., and Velázquez, E. 2005. Martelella mediterranea gen. nov., sp. nov., a novel alpha-proteobacterium isolated from a subterranean saline lake. Int. Syst. Evol. Microbiol. 55, 955–959.CrossRefGoogle Scholar
  22. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.Google Scholar
  23. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc. Newark, DE, USA.Google Scholar
  24. Schleifer, K.H. and Kandler, O. 1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407–477.Google Scholar
  25. Shirling, E.B. and Gottlieb, D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16, 313–340.CrossRefGoogle Scholar
  26. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.CrossRefGoogle Scholar
  27. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.CrossRefGoogle Scholar
  28. Xu, P., Li, W.J., Tang, S.K., Zhang, Y.Q., Chen, G.Z., Chen, H.H., Xu, L.H., and Jiang, C.L. 2005. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int. J. Syst. Evol. Microbiol. 55, 1149–1153.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  1. 1.Research Center for Medicine and BiologyZunyi Medical UniversityZunyiP. R. China
  2. 2.Zunyi Engineering Research Center of Physical Testing and Chemical AnalysisZunyi Medical UniversityZunyiP. R. China

Personalised recommendations