Advertisement

Journal of Microbiology

, Volume 57, Issue 2, pp 170–179 | Cite as

Lytic KFS-SE2 phage as a novel bio-receptor for Salmonella Enteritidis detection

  • In Young Choi
  • Cheonghoon Lee
  • Won Keun Song
  • Sung Jae Jang
  • Mi-Kyung ParkEmail author
Virology
  • 16 Downloads

Abstract

Since Salmonella Enteritidis is one of the major foodborne pathogens, on-site applicable rapid detection methods have been required for its control. The purpose of this study was to isolate and purify S. Enteritidis-specific phage (KFS-SE2 phage) from an eel farm and to investigate its feasibility as a novel, efficient, and reliable bio-receptor for its employment. KFS-SE2 phage was successfully isolated at a high concentration of (2.31 ± 0.43) × 1011 PFU/ml, and consisted of an icosahedral head of 65.44 ± 10.08 nm with a non-contractile tail of 135.21 ± 12.41 nm. The morphological and phylogenetic analysis confirmed that it belongs to the Pis4avirus genus in the family of Siphoviridae. KFS-SE2 genome consisted of 48,608 bp with 45.7% of GC content. Genome analysis represented KFS-SE2 to have distinctive characteristics as a novel phage. Comparative analysis of KFS-SE2 phage with closely related strains confirmed its novelty by the presence of unique proteins. KFS-SE2 phage exhibited excellent specificity to S. Enteritidis and was stable under the temperature range of 4 to 50°C and pH of 3 to 11 (P < 0.05). The latent time was determined to be 20 min. Overall, a new lytic KFS-SE2 phage was successfully isolated from the environment at a high concentration and the excellent feasibility of KFS-SE2 phage was demonstrated as a new bio-receptor for S. Enteritidis detection.

Keywords

bio-receptor phage Salmonella Enteritidis lytic biosensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8610_MOESM1_ESM.xlsx (48 kb)
Supplementary material, approximately 49 KB.
12275_2019_8610_MOESM2_ESM.pdf (278 kb)
Supplementary data Table S2. BLAST results of KFS-SE2 genome sequence

References

  1. Amarillas, L., Rubí-Rangel, L., Chaidez, C., González-Robles, A., Lightbourn-Rojas, L., and León-Félix, J. 2017. Isolation and characterization of phiLLS, a novel phage with potential biocontrol agent against multidrug-resistant Escherichia coli. Front. Microbiol. 8, 01355.CrossRefGoogle Scholar
  2. Arndt, D., Grant, J.R., Marcu, A., Sajed, T., Pon, A., Liang, Y., and Wishart, D.S. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21.CrossRefGoogle Scholar
  3. Arya, S.K., Singh, A., Naidoo, R., Wu, P., McDermott, M.T., and Evoy, S. 2011. Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. Analyst 136, 486–492.CrossRefGoogle Scholar
  4. Augustine, J., Louis, L., Varghese, S.M., Bhat, S.G., and Kishore, A. 2013. Isolation and partial characterization of ØFSP-1, a Salmonella specific lytic phage from intestinal content of broiler chicken. J. Basic Microbiol. 53, 111–120.CrossRefGoogle Scholar
  5. Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75.CrossRefGoogle Scholar
  6. Bailly-Bechet, M., Vergassola, M., and Rocha, E. 2007. Causes for the intriguing presence of tRNAs in phages. Genome Res. 17, 1486–1495.CrossRefGoogle Scholar
  7. Bao, H., Zhang, H., and Wang, R. 2011. Isolation and characterization of bacteriophages of Salmonella enterica serovar Pullorum. Poult. Sci. 90, 2370–2377.CrossRefGoogle Scholar
  8. Bardina, C., Colom, J., Spricigo, D.A., Otero, J., Sánchez-Osuna, M., Cortés, P., and Llagostera, M. 2016. Genomics of three new bacteriophages useful in the biocontrol of Salmonella. Front. Microbiol. 7, 00545.CrossRefGoogle Scholar
  9. Batz, M.B., Hoffmann, S., and Morris, J.G.Jr. 2012. Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J. Food Prot. 75, 1278–1291.CrossRefGoogle Scholar
  10. Bridges, M.A. and Mattice, M.R. 1939. Over two thousand estimations of the pH of representative foods. Am. J. Dig. Dis. 6, 440–449.CrossRefGoogle Scholar
  11. Bushnell, B. 2014. BBMap. Available from https://sourceforge.net/projects/bbmap/ (accessed on Nov. 06, 2018).
  12. Byeon, H.M., Vodyanoy, V.J., Oh, J.H., Kwon, J.H., and Park, M.K. 2015. Lytic phage-based magnetoelastic biosensors for on-site detection of methicillin-resistant Staphylococcus aureus on spinach leaves. J. Electrochem. Soc. 162, B230–B235.CrossRefGoogle Scholar
  13. Carey-Smith, G.V., Billington, C., Cornelius, A.J., Hudson, J.A., and Heinemann, J.A. 2006. Isolation and characterization of bacteriophages infecting Salmonella spp. FEMS Microbiol. Lett. 258, 182–186.CrossRefGoogle Scholar
  14. Casjens, S.R. and Gilcrease, E.B. 2009. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol. Biol. 502, 91–111.CrossRefGoogle Scholar
  15. Casjens, S., Wyckoff, E., Hayden, M., Sampson, L., Eppler, K., Randall, S., Moreno, E.T., and Serwer, P. 1992. Bacteriophage P22 portal protein is part of the gauge that regulates packing density of intravirion DNA. J. Mol. Biol. 224, 1055–1074.CrossRefGoogle Scholar
  16. Chen, L., Zheng, D., Liu, B., Yang, J., and Jin, Q. 2016. VFDB 2016: hierarchical and refined dataset for big data analysis–10 years on. Nucleic Acids Res. 44, D694–D697.CrossRefGoogle Scholar
  17. Choi, I.Y., Lee, J.H., Kim, H.J., and Park, M.K. 2017. Isolation and characterization of a novel broad-host-range bacteriophage infecting Salmonella enterica subsp. enterica for biocontrol and rapid detection. J. Microbiol. Biotechnol. 27, 2151–2155.CrossRefGoogle Scholar
  18. Choi, I.Y., Park, J.H., Gwak, K.M., Kim, K.P., Oh, J.H., and Park, M.K. 2018. Studies on lytic, tailed Bacillus cereus-specific phage for use in a ferromagnetoelastic biosensor as a novel recognition element. J. Microbiol. Biotechnol. 28, 87–94.Google Scholar
  19. De Lappe, N., Doran, G., O’connor, J., O’hare, C., and Cormican, M. 2009. Characterization of bacteriophages used in the Salmonella enterica serovar Enteritidis phage-typing scheme. J. Med. Microbiol. 58, 86–93.CrossRefGoogle Scholar
  20. Doyle, M.P. and Buchanan, R.L. 2013. Food microbiology: Fundamentals and frontiers, 4th ed, pp. 187–236. American Society for Microbiology, Washington, D.C., USA.CrossRefGoogle Scholar
  21. Edwards, R.A., Olsen, G.J., and Maloy, S.R. 2002. Comparative genomics of closely related salmonellae. Trends Microbiol. 10, 94–99.CrossRefGoogle Scholar
  22. Farris, J.S. 1974. Formal definitions of paraphyly and polyphyly. Syst. Zool. 23, 548–554.CrossRefGoogle Scholar
  23. Garneau, J.R., Depardieu, F., Fortier, L.C., Bikard, D., and Monot, M. 2017. PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci. Rep. 7, 8292.CrossRefGoogle Scholar
  24. Gervais, L., Gel, M., Allain, B., Tolba, M., Brovko, L., Zourob, M., Mandeville, R., Griffiths, M., and Evoy, S. 2007. Immobilization of biotinylated bacteriophages on biosensor surfaces. Sensor Actuat. B-Chem. 125, 615–621.CrossRefGoogle Scholar
  25. Göker, M., García-Blázquez, G., Voglmayr, H., Tellería, M.T., and Martín, M.P. 2009. Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora. PLoS One 4, e6319.CrossRefGoogle Scholar
  26. Gwak, K., Choi, I., Lee, J., Oh, J., and Park, M. 2018. Isolation and characterization of a lytic and highly specific phage against Yersinia enterocolitica as a novel biocontrol agent. J. Microbiol. Biotechnol. DOI: 10.4014/jmb.1808.08001.Google Scholar
  27. Hiremath, N., Guntupalli, R., Vodyanoy, V., Chin, B.A., and Park, M.K. 2015. Detection of methicillin-resistant Staphylococcus aureus using novel lytic phage-based magnetoelastic biosensors. Sensor Actuat. B-Chem. 210, 129–136.CrossRefGoogle Scholar
  28. Hosseinidoust, Z., Olsson, A.L., and Tufenkji, N. 2014. Going viral: designing bioactive surfaces with bacteriophage. Colloids Surf. B: Biointerfaces 124, 2–16.CrossRefGoogle Scholar
  29. Hungaro, H.M., Mendonça, R.C.S., Gouvêa, D.M., Vanetti, M.C.D., and de Oliveira Pinto, C.L. 2013. Use of bacteriophages to reduce Salmonella in chicken skin in comparison with chemical agents. Food Res. Int. 52, 75–81.CrossRefGoogle Scholar
  30. Jonczyk, E., Klak, M., Miedzybrodzki, R., and Górski, A. 2011. The influence of external factors on bacteriophages. Folia Microbiol. (Praha) 56, 191–200.CrossRefGoogle Scholar
  31. Kerketta, P., Agarwal, R., Rawat, M., Jain, L., Kumar, P.P., Dhanze, H., Kumar, M.S., and Kumar, A. 2014. Isolation and characterization of lytic bacteriophage (øSTIz1) against Salmonella enterica serovars Typhimurium. J. Pure Appl. Microbiol. 8, 4719–4726.Google Scholar
  32. Kim, S., Kim, S.H., Rahman, M., and Kim, J. 2018. Characterization of a Salmonella Enteritidis bacteriophage showing broad lytic activity against Gram-negative enteric bacteria. J. Microbiol. 56, 917–925.CrossRefGoogle Scholar
  33. Lefkowitz, E.J., Dempsey, D.M., Hendrickson, R.C., Orton, R.J., Siddell, S.G., and Smith, D.B. 2017. Virus taxonomy: the database of the international committee on taxonomy of viruses (ICTV). Nucleic Acids Res. 46, D708–D717.CrossRefGoogle Scholar
  34. Lefort, V., Desper, R., and Gascuel, O. 2015. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32, 2798–2800.CrossRefGoogle Scholar
  35. Li, S., Horikawa, S., Shen, W., and Chin, B. 2010. Detection of Salmonella Typhimurium on fresh food produce using phage-based magnetoelastic biosensors. ECS Trans. 33, 91–97.CrossRefGoogle Scholar
  36. Li, L. and Zhang, Z. 2014. Isolation and characterization of a virulent bacteriophage SPW specific for Staphylococcus aureus isolated from bovine mastitis of lactating dairy cattle. Mol. Biol. Rep. 41, 5829–5838.CrossRefGoogle Scholar
  37. Mao, C., Liu, A., and Cao, B. 2009. Virus-based chemical and biological sensing. Angew. Chem. Int. Ed. Engl. 48, 6790–6810.CrossRefGoogle Scholar
  38. McArthur, A.G., Waglechner, N., Nizam, F., Yan, A., Azad, M.A., Baylay, A.J., Bhullar, K., Canova, M.J., De Pascale, G., and Ejim, L., et al. 2013. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 57, 3348–3357.CrossRefGoogle Scholar
  39. Meier-Kolthoff, J.P. and Göker, M. 2017. VICTOR: genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 33, 3396–3404.CrossRefGoogle Scholar
  40. Meier-Kolthoff, J.P., Hahnke, R.L., Petersen, J., Scheuner, C., Michael, V., Fiebig, A., Rohde, C., Rohde, M., Fartmann, B., and Goodwin, L.A. 2014. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand. Genomic Sci. 9, 2.CrossRefGoogle Scholar
  41. Oh, J.H. and Park, M.K. 2017. Recent trends in Salmonella outbreaks and emerging technology for biocontrol of Salmonella using phages in foods: a review. J. Microbiol. Biotechnol. 27, 2075–2088.CrossRefGoogle Scholar
  42. Olsen, E.V., Sorokulova, I.B., Petrenko, V.A., Chen, I.H., Barbaree, J.M., and Vodyanoy, V.J. 2006. Affinity-selected filamentous bacteriophage as a probe for acoustic wave biodetectors of Salmonella Typhimurium. Biosens. Bioelectron. 21, 1434–1442.CrossRefGoogle Scholar
  43. Park, M.K. and Chin, B.A. 2016. Novel approach of a phage-based magnetoelastic biosensor for the detection of Salmonella enterica serovar Typhimurium in soil. J. Microbiol. Biotechnol. 26, 2051–2059.CrossRefGoogle Scholar
  44. Park, M.K., Hirematha, N., Weerakoon, K.A., Vaglenov, K.A., Barbaree, J.M., and Chin, B.A. 2013a. Effects of surface morphologies of fresh produce on the performance of phage-based magnetoelastic biosensors. J. Electrochem. Soc. 160, B6–B12.CrossRefGoogle Scholar
  45. Park, M., Lee, J.H., Shin, H., Kim, M., Choi, J., Kang, D.H., Heu, S., and Ryu, S. 2012b. Characterization and comparative genomic analysis of a novel bacteriophage, SFP10, simultaneously inhibiting both Salmonella enterica and Escherichia coli O157:H7. Appl. Environ. Microbiol. 78, 58–69.CrossRefGoogle Scholar
  46. Park, M.K., Li, S., and Chin, B.A. 2013b. Detection of Salmonella Typhimurium grown directly on tomato surface using phagebased magnetoelastic biosensors. Food Bioprocess Technol. 6, 682–689.CrossRefGoogle Scholar
  47. Park, M.K., Oh, J.H., and Chin, B.A. 2011. The effect of incubation temperature on the binding of Salmonella Typhimurium to phagebased magnetoelastic biosensors. Sensor Actuat. B-Chem. 160, 1427–1433.CrossRefGoogle Scholar
  48. Park, M.K., Wikle, H.C., Chai, Y., Horikawa, S., Shen, W., and Chin, B.A. 2012a. The effect of incubation time for Salmonella Typhimurium binding to phage-based magnetoelastic biosensors. Food Control 26, 539–545.CrossRefGoogle Scholar
  49. Proroga, Y.T., Capuano, F., Capparelli, R., Bilei, S., Bernardo, M., Cocco, M.P., Campagnuolo, R., and Pasquale, V. 2018. Characterization of non-typhoidal Salmonella enterica strains of human origin in central and southern Italy. Ital. J. Food Saf. 7, 6888.Google Scholar
  50. Putturu, R., Eevuri, T., Ch, B., and Nelapati, K. 2015. Salmonella Enteritidis-food borne pathogen-a review. Int. J. Pharm. Biol. Sci. 5, 86–95.Google Scholar
  51. Rambaut, A. 2017. FigTree-version 1.4.3, a graphical viewer of phylogenetic trees. Available from http://tree.bio.ed.ac.uk/software/figtree/ (accessed on Nov. 06, 2018).
  52. Sharma, H. and Mutharasan, R. 2013. Review of biosensors for foodborne pathogens and toxins. Sensor Actuat. B-Chem. 183, 535–549.CrossRefGoogle Scholar
  53. Shin, H., Lee, J.H., Yoon, H., Kang, D.H., and Ryu, S. 2014. Genomic investigation of lysogen formation and host lysis systems of the Salmonella temperate bacteriophage SPN9CC. Appl. Environ. Microbiol. 80, 374–384.CrossRefGoogle Scholar
  54. Sillankorva, S.M., Oliveira, H., and Azeredo, J. 2012. Bacteriophages and their role in food safety. Int. J. Microbiol. 2012, 863945.CrossRefGoogle Scholar
  55. Singh, A., Arutyunov, D., Szymanski, C.M., and Evoy, S. 2012. Bacteriophage based probes for pathogen detection. Analyst 137, 3405–3421.CrossRefGoogle Scholar
  56. Singh, A., Glass, N., Tolba, M., Brovko, L., Griffiths, M., and Evoy, S. 2009. Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens. Biosens. Bioelectron. 24, 3645–3651.CrossRefGoogle Scholar
  57. Singh, A., Poshtiban, S., and Evoy, S. 2013. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 13, 1763–1786.CrossRefGoogle Scholar
  58. Sorokulova, I., Olsen, E., and Vodyanoy, V. 2014. Bacteriophage biosensors for antibiotic-resistant bacteria. Expert Rev. Med. Devices 11, 175–186.CrossRefGoogle Scholar
  59. Stoddard, B.L. 2011. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19, 7–15.CrossRefGoogle Scholar
  60. Sun, W., Brovko, L., and Griffiths, M. 2001. Use of bioluminescent Salmonella for assessing the efficiency of constructed phage-based biosorbent. J. Ind. Microbiol. Biotechnol. 27, 126–128.CrossRefGoogle Scholar
  61. Thomson, N.R., Clayton, D.J., Windhorst, D., Vernikos, G., Davidson, S., Churcher, C., Quail, M.A., Stevens, M., Jones, M.A., and Watson, M. 2008. Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res. 18, 1624–1637.CrossRefGoogle Scholar
  62. Tiwari, B.R., Kim, S., and Kim, J. 2013. A virulent Salmonella enterica serovar Enteritidis phage SE2 with a strong bacteriolytic activity of planktonic and biofilmed cells. J. Bacteriol. Virol. 43, 186–194.CrossRefGoogle Scholar
  63. Turner, D., Hezwani, M., Nelson, S., Salisbury, V., and Reynolds, D. 2012. Characterization of the Salmonella bacteriophage vB_SenSEnt1. J. Gen. Virol. 93, 2046–2056.CrossRefGoogle Scholar
  64. USDA. 2013. Foodborne illness cost calculator: Salmonella. Available from http://www.ers.usda.gov/topics/food-safety/foodborneillness/salmintro.asp (accessed on Oct. 30, 2018).
  65. Velusamy, V., Arshak, K., Korostynska, O., Oliwa, K., and Adley, C. 2010. An overview of foodborne pathogen detection: In the perspective of biosensors. Biotechnol. Adv. 28, 232–254.CrossRefGoogle Scholar
  66. Waisnawa, I., Santosa, I., Sunu, I., and Wirajati, I. 2018. Model development of cold chains for fresh fruits and vegetables distribution: a case study in bali province. J. Phys. Conf. Ser. 953, 012109.CrossRefGoogle Scholar
  67. Wang, N. 2006. Lysis timing and bacteriophage fitness. Genetics 172, 17–26.CrossRefGoogle Scholar
  68. Wang, C., Chen, Q., Zhang, C., Yang, J., Lu, Z., Lu, F., and Bie, X. 2017. Characterization of a broad host-spectrum virulent Salmonella bacteriophage fmb-p1 and its application on duck meat. Virus Res. 236, 14–23.CrossRefGoogle Scholar
  69. Wullf, D.L., Ho, Y.S., Powers, S., and Rosenberg, M. 1993. The int genes of bacteriophages P22 and λ are regulated by different mechanisms. Mol. Microbiol. 9, 261–271.CrossRefGoogle Scholar
  70. Yeni, F., Yavas, S., Alpas, H., and Soyer, Y. 2016. Most common foodborne pathogens and mycotoxins on fresh produce: a review of recent outbreaks. Crit. Rev. Food Sci. Nutr. 56, 1532–1544.CrossRefGoogle Scholar
  71. Young, R. 2014. Phage lysis: three steps, three choices, one outcome. J. Microbiol. 52, 243–258.CrossRefGoogle Scholar
  72. Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., Aarestrup, F.M., and Larsen, M.V. 2012. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • In Young Choi
    • 1
  • Cheonghoon Lee
    • 2
    • 3
  • Won Keun Song
    • 1
  • Sung Jae Jang
    • 2
  • Mi-Kyung Park
    • 1
    • 4
    Email author
  1. 1.School of Food Science and BiotechnologyKyungpook National UniversityDaeguRepublic of Korea
  2. 2.Department of Environmental Health SciencesGraduate School of Public Health, Seoul National UniversitySeoulRepublic of Korea
  3. 3.Institute of Health and EnvironmentSeoul National UniversitySeoulRepublic of Korea
  4. 4.Food and Bio-industry Research InstituteKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations