Transcriptomic and proteomic profiling revealed global changes in Streptococcus thermophilus during pH-controlled batch fermentations

  • Yali Qiao
  • Cong Leng
  • Gefei Liu
  • Yanjiao Zhang
  • Xuepeng Lv
  • Hongyu Chen
  • Jiahui Sun
  • Zhen FengEmail author


Understanding global changes of physiological processes at the molecular level during the growth of Streptococcus thermophilus is essential for the rational design of cultivation media and the optimization of bioprocesses. Transcriptomics and proteomics were combined to investigate the global changes at the transcript and protein level during the growth of S. thermophilus. The expression of 1396 genes (FDR ≤ 0.001) and 876 proteins (P < 0.05) changed significantly over time. The most remarkable growth phase dependent changes occurred in the late-lag phase and were related to heterofermentation, glycolysis, peptidoglycan biosynthesis, conversion between amino acids and stress response. The present results could provide theoretical guidance for high-cell-density culture, help design cultivation media, and help attain a high biomass of S. thermophilus.


Streptococcus thermophilus transcriptomic proteomic global changes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by grants from the National Natural Science Foundation of China (31771989), Natural Science Foundation of Heilongjiang Province (C2016023), and Academic Backbone Project of Northeast Agricultural University (15XG21).

Supplementary material

12275_2019_8604_MOESM1_ESM.pdf (389 kb)
Supplementary material, approximately 392 KB.
12275_2019_8604_MOESM2_ESM.xlsx (41 kb)
Supplementary data Table S3. List of translation differences in proteins. Proteins with at least 1.2-fold change (P < 0.05) were considered to be significant differentially expressed proteins.


  1. Bove, C.G., Angelis, M.D., Gatti, M., Calasso, M., Neviani, E., and Gobbetti, M. 2012. Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium. Proteomics 12, 3206–3218.CrossRefGoogle Scholar
  2. Calderini, E., Celebioglu, H.U., Villarroel, J., Jacobsen, S., Svensson, B., and Pessione, E. 2017. Comparative proteomics of oxidative stress response of Lactobacillus acidophilus NCFM reveals effects on DNA repair and cysteine de novo synthesis. Proteomics 17, 1600178.CrossRefGoogle Scholar
  3. Cotter, P.D. and Hill, C. 2003. Surviving the acid test: responses of Gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67, 429–453.CrossRefGoogle Scholar
  4. Diez, L., Solopova, A., Fernándezpérez, R., González, M., Tenorio, C., Kuipers, O.P., and RuizLarrea, F. 2017. Transcriptome analysis shows activation of the arginine deiminase pathway in Lactococcus lactis as a response to ethanol stress. Int. J. Food Microbiol. 257, 41.CrossRefGoogle Scholar
  5. Du, L., He, Y., and Luo, Y. 2008. Crystal structure and enantiomer selection by D-alanyl carrier protein ligase DltA from Bacillus cereus. Biochemistry 47, 11473–11480.CrossRefGoogle Scholar
  6. Duche, O., Tremoulet, F., Namane, A., and Labadie, J. 2002. A proteomic analysis of the salt stress response of Listeria monocytogenes. FEMS Microbiol. Lett. 215, 183–188.CrossRefGoogle Scholar
  7. Heim, S., Lleo, M.D.M., Bonato, B., Guzman, C.A., and Canepari, P. 2002. The viable but nonculturable state and starvation are different stress responses of Enterococcus faecalis, as determined by proteome analysis. J. Bacteriol. 184, 6739–6745.CrossRefGoogle Scholar
  8. Kamei, Y., Tamada, Y., Nakayama, Y., Fukusaki, E., and Mukai, Y. 2014. Changes in transcription and metabolism during the early stage of replicative cellular senescence in budding yeast. J. Biol. Chem. 289, 32081–32093.CrossRefGoogle Scholar
  9. Kang, X., Ling, N., Sun, G., Zhou, Q., Zhang, L., and Sheng, Q. 2012. Complete genome sequence of Streptococcus thermophilus strain MN-ZLW-002. J. Bacteriol. 194, 4428–4429.CrossRefGoogle Scholar
  10. Klimina, K.M., Kjasova, D.K., Poluektova, E.U., Krügel, H., Leuschner, Y., Saluz, H.P., and Danilenko, V.N. 2013. Identification and characterization of toxin-antitoxin systems in strains of Lactobacillus rhamnosus isolated from humans. Anaerobe 22, 82–89.CrossRefGoogle Scholar
  11. Koistinen, K.M., Plumed- Ferrer, C., Lehesranta, S.J., Karenlampi, S.O., and Wright, A.V. 2007. Comparison of growth-phase-dependent cytosolic proteomes of two Lactobacillus plantarum strains used in food and feed fermentations. FEMS Microbiol. Lett. 273, 12–21.CrossRefGoogle Scholar
  12. Krugel, H., Klimina, K.M., Mrotzek, G., Tretyakov, A., Schofl, G., Saluz, H.P., Brantl, S., Poluektova, E.U., and Danilenko, V.N. 2015. Expression of the toxin-antitoxin genes yefM Lrh. yoeB Lrh in human Lactobacillus rhamnosus isolates. J. Basic Microbiol. 55, 982–991.CrossRefGoogle Scholar
  13. Lahtvee, P.J., Adamberg, K., Arike, L., Nahku, R., Aller, K., and Vilu, R. 2011. Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates. Microb. Cell Fact. 10, 1–12.CrossRefGoogle Scholar
  14. Letort, C. and Juillard, V. 2010. Development of a minimal chemically- defined medium for the exponential growth of Streptococcus thermophilus. J. Appl. Microbiol. 91, 1023–1029.CrossRefGoogle Scholar
  15. Lin, M.H., Sugiyama, N., and Ishihama, Y. 2015. Systematic profiling of the bacterial phosphoproteome reveals bacterium-specific features of phosphorylation. Sci. Signal. 8, rs10.Google Scholar
  16. Liu, G., Qiao, Y., Zhang, Y., Leng, C., Sun, J., Chen, H., Zhang, Y., Li, A., and Feng, Z. 2018. Profiles of Streptococcus thermophilus MNZLW-002 nutrient requirements in controlled pH batch fermentations. Microbiologyopen 8, e00633.CrossRefGoogle Scholar
  17. Louesdon, S., Charlot-Rougé, S., Juillard, V., Tourdot-Maréchal, R., and Beal, C. 2014. Osmotic stress affects the stability of freezedried Lactobacillus buchneri R1102 as a result of intracellular betaine accumulation and membrane characteristics. J. Appl. Microbiol. 117, 196–207.CrossRefGoogle Scholar
  18. Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.CrossRefGoogle Scholar
  19. Pfaffl, M.W., Horgan. G.W., and Dempfle, L. 2002. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, e36.Google Scholar
  20. Prajapati, J.B., Nathani, N.M., Patel, A.K., Senan, S., and Joshi, C.G. 2013. Genomic analysis of dairy starter culture Streptococcus thermophilus MTCC 5461. J. Microbiol. Biotechnol. 23, 459–466.CrossRefGoogle Scholar
  21. Qiu, W., Zheng, X., Wei, Y., Zhou, X., Zhang, K., Wang, S., Cheng, L., Li, Y., Ren, B., Xu, X., et al. 2016. D-Alanine metabolism is essential for growth and biofilm formation of Streptococcus mutans. Mol. Oral Microbiol. 31, 435–444.CrossRefGoogle Scholar
  22. Reed, M.C., Nijhout, H.F., Sparks, R., and Ulrich, C.M. 2004. A mathematical model of the methionine cycle. J. Theor. Biol. 226, 33–43.CrossRefGoogle Scholar
  23. Rolfe, M.D., Rice, C.J., Lucchini, S., Pin, C., Thompson, A., Cameron, A.D., Alston, M., Stringer, M.F., Betts, R.P., Baranyi, J., et al. 2012. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J. Bacteriol. 194, 686–701.CrossRefGoogle Scholar
  24. Rossi, C.C., de Oliveira, L.L., de Carvalho Rodrigues, D., Urmenyi, T.P., Laport, M.S., and Giambiagidemarval, M. 2017. Expression of the stress-response regulators CtsR and HrcA in the uropathogen Staphylococcus saprophyticus during heat shock. Antonie van Leeuwenhoek 110, 1105–1111.CrossRefGoogle Scholar
  25. Schaffer, S., Takahashi, K., and Azuma, J. 2000. Role of osmoregulation in the actions of taurine. Amino Acids 19, 527–546.CrossRefGoogle Scholar
  26. Sheehan, V.M., Sleator, R.D., Fitzgerald, G.F., and Hill, C. 2006. Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Appl. Environ. Microbiol. 72, 2170.CrossRefGoogle Scholar
  27. Siragusa, S., De Angelis, M., Calasso, M., Campanella, D., Minervini, F., Di Cagno, R., and Gobbetti, M. 2013. Fermentation and proteome profiles of Lactobacillus plantarum strains during growth under food-like conditions. J. Proteomics 96, 366–380.CrossRefGoogle Scholar
  28. Soufi, B., Gnad, F., Jensen, P.R., Petranovic, D., Mann, M., Mijakovic, I., and Macek, B. 2010. The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins. Proteomics 8, 3486–3493.CrossRefGoogle Scholar
  29. Wang, H. and Cronan, J.E. 2004. Functional replacement of the FabA and FabB proteins of Escherichia coli fatty acid synthesis by Enterococcus faecalis FabZ and FabF homologues. J. Biol. Chem. 279, 34489–34495.CrossRefGoogle Scholar
  30. Wang, J., Wu, R., Zhang, W., Sun, Z., Zhao, W., and Zhang, H. 2013. Proteomic comparison of the probiotic bacterium Lactobacillus casei Zhang cultivated in milk and soy milk. J. Dairy Sci. 96, 5603–5624.CrossRefGoogle Scholar
  31. Weidenmaier, C. and Peschel, A. 2008. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat. Rev. Microbiol. 6, 276–287.CrossRefGoogle Scholar
  32. Wu, C., Zhang, J., Wang, M., Du, G., and Chen, J. 2012. Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J. Ind. Microbiol. Biotechnol. 39, 1031–1039.CrossRefGoogle Scholar
  33. Zaunmuller, T., Eichert, M., Richter, H., and Unden, G. 2006. Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl. Microbiol. Biotechnol. 72, 421–429.CrossRefGoogle Scholar
  34. Zhang, S., Scott, J.M., and Haldenwang, W.G. 2001. Loss of ribosomal protein L11 blocks stress activation of the Bacillus subtilis transcription factor ςB. J. Bacteriol. 183, 2316–2321.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  • Yali Qiao
    • 1
  • Cong Leng
    • 1
  • Gefei Liu
    • 1
  • Yanjiao Zhang
    • 1
  • Xuepeng Lv
    • 1
  • Hongyu Chen
    • 1
  • Jiahui Sun
    • 1
  • Zhen Feng
    • 1
    Email author
  1. 1.Key Laboratory of Dairy Science, Ministry of Education, College of Food ScienceNortheast Agricultural UniversityHeilongjiangP. R. China

Personalised recommendations