Advertisement

Journal of Microbiology

, Volume 57, Issue 1, pp 38–44 | Cite as

Mediterraneibacter butyricigenes sp. nov., a butyrate-producing bacterium isolated from human faeces

  • Ji-Sun Kim
  • Keun Chul Lee
  • Min Kuk Suh
  • Kook-Il Han
  • Mi Kyung Eom
  • Ju Huck Lee
  • Seung-Hwan Park
  • Se Won Kang
  • Jam-Eon Park
  • Byeong Seob Oh
  • Seung Yeob Yu
  • Seung-Hyeon Choi
  • Dong Ho Lee
  • Hyuk Yoon
  • Byung-Yong Kim
  • Seung-Jo Yang
  • Jung-Sook Lee
Microbial Ecology and Environmental Microbiology

Abstract

A Gram-stain-positive, obligately anaerobic, non-motile, nonspore-forming, and rod-shaped bacterial strain, designated KGMB01110T, was isolated from a faecal sample of a healthy male in South Korea. Phylogenetic analysis based on 16S rRNA gene showed that strain KGMB01110T belonged to Clostridium cluster XIVa and was most closely related to Mediterraneibacter glycyrrhizinilyticus KCTC 5760T (95.9% 16S rRNA gene sequence similarity). The DNA G + C content of strain KGMB01110T based on its whole genome sequence was 44.1 mol%. The major cellular fatty acids (> 10%) of the isolate were C14:0 and C16:0. The strain KGMB01110T was positive for arginine dihydrolase, β-galactosidase-6-phosphatase, and alkaline phosphatase. The strain KGMB01110T also produced acid from D-glucose and D-rhamnose, and hydrolyzed gelatin and aesculin. Furthermore, HPLC analysis and UV-tests of culture supernatant revealed that the strain KGMB01110T produced butyrate as the major end product of glucose fermentation. Based on the phylogenetic and phenotypic characteristics, strain KGMB01110T represent a novel species of the genus Mediterraneibacter in the family Lachnospiraceae. The type strain is KGMB01110T (= KCTC 15684T = CCUG 72830T).

Keywords

Mediterraneibacter butyricigenes sp. nov. butyrate human faeces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8550_MOESM1_ESM.pdf (1.1 mb)
Supplementary material, approximately 1097 KB.

References

  1. Akasaka, H., Ueki, A., Hanada, S., Kamagata, Y., and Ueki, K. 2003. Propionicimonas paludicola gen. nov., sp. nov., a novel facultatively anaerobic, Gram-positive, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil. Int. J. Syst. Evol. Microbiol. 53, 1991–1998.CrossRefGoogle Scholar
  2. Browne, H.P., Forster, S.C., Anonye, B.O., Kumar, N., Neville, B.A., Stares, M.D., Goulding, D., and Lawley, T.D. 2016. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546.CrossRefGoogle Scholar
  3. Chun, J. and Goodfellow, M. 1995. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45, 240–245.CrossRefGoogle Scholar
  4. Collins, M.D., Lawson, P.A., Willems, A., Cordoba, J.J., and Fernandez-Garayzabal, J. 1994. The phylogeny of the genus Clostridium: Proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44, 812–826.CrossRefGoogle Scholar
  5. Colston, S.M., Fullmer, M., Beka, L., Lamy, B., Gogarten, J.P., and Graf, J. 2014. Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. mBio 5, e02136–e02114.Google Scholar
  6. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefGoogle Scholar
  7. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20, 406–416.CrossRefGoogle Scholar
  8. Frank, D.N., Amand, A.L.S., Feldman, R.A., Boedeker, E.C., Harpaz, N., and Pace, N.R. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 104, 13780–13785.CrossRefGoogle Scholar
  9. Fujisawa, T., Namba, K., Hirayama, K., Lee, W.K., and Mitsuoka, T. 1995. New selective media for isolation of Clostridia from faecal specimens. J. Appl. Bacteriol. 78, 481–486.CrossRefGoogle Scholar
  10. Furusawa, Y., Obata, Y., Fukuda, S., Endo, T.A., Nakato, G., Takahashi, D., Nakanishi, Y., Uetake, C., Kato, K., Kato, T., et al. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450.CrossRefGoogle Scholar
  11. Hold, G.L., Pryde, S.E., Russell, V.J., Furrie, E., and Flint, H.J. 2002. Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS Microbiol. Ecol. 39, 33–39.CrossRefGoogle Scholar
  12. Ji, J., Shu, D., Zheng, M., Wang, J., Luo, C., Wang, Y., Guo, F., Zou, X., Lv, X., Li, Y., et al. 2016. Microbial metabolite butyrate facilitates M2 macrophage polarization and function. Sci. Rep. 6, 24838.CrossRefGoogle Scholar
  13. Kim, M., Oh, H.S., Park, S.C., and Chun, J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64, 346–351.CrossRefGoogle Scholar
  14. Kim, M.S., Roh, S.W., and Bae, J.W. 2011. Ruminococcus faecis sp. nov., isolated from human faeces. J. Microbiol. 49, 487–491.CrossRefGoogle Scholar
  15. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.CrossRefGoogle Scholar
  16. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.CrossRefGoogle Scholar
  17. Lopetuso, L.R., Scaldaferri, F., Petito, V., and Gasbarrini, A. 2013. Commensal Clostridia: Leading players in the maintenance of gut homeostasis. Gut Pathog. 5, 23.CrossRefGoogle Scholar
  18. Manson, J.M., Rauch, M., and Gilmore, M.S. 2008. The commensal microbiology of the gastrointestinal tract. Adv. Exp. Med. Biol. 635, 15–28.CrossRefGoogle Scholar
  19. Pryde, S.E., Duncan, S.H., Hold, G.L., Stewart, C.S., and Flint, H.J. 2002. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 217, 133–139.CrossRefGoogle Scholar
  20. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O. 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596.Google Scholar
  21. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.Google Scholar
  22. Sakamoto, M. and Ohkuma, M. 2010. Usefulness of the hsp60 gene for the identification and classification of Gram-negative anaerobic rods. J. Med. Microbiol. 59, 1293–1302.CrossRefGoogle Scholar
  23. Sakamoto, M., Iino, T., and Ohkuma, M. 2017. Faecalimonas umbilicata gen. nov., sp. nov., isolated from human faeces, and reclassification of Eubacterium contortum, Eubacterium fissicatena and Clostridium oroticum as Faecalicatena contorta gen. nov., comb. nov., Faecalicatena fissicatena comb. nov. and Faecalicatena orotica comb. nov. Int. J. Syst. Evol. Microbiol. 67, 1219–1227.CrossRefGoogle Scholar
  24. Sakuma, K., Kitahara, M., Kibe, R., Sakamoto, M., and Benno, Y. 2006. Clostridium glycyrrhizinilyticum sp. nov., a glycyrrhizinhydrolysing bacterium isolated from human faeces. Microbiol. Immunol. 50, 481–485.CrossRefGoogle Scholar
  25. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.Google Scholar
  26. Schilderink, R., Verseijden, C., Seppen, J., Muncan, V. 2016. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G1138–1146.Google Scholar
  27. Shin, Y.K., Lee, J.S., Chun, C.O., Kim, H.J., and Park, Y.H. 1996. Isoprenoid quinone profiles of Leclercia adecarboxylata KCTC 1036T. J. Microbiol. Biotechnol. 6, 68–69.Google Scholar
  28. Sorokin, D.Y. 2005. Is there a limit for high-pH life? Int. J. Syst. Evol. Microbiol. 55, 1405–1406.CrossRefGoogle Scholar
  29. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.CrossRefGoogle Scholar
  30. Tittsler, R.P. and Sandholzer, L.A. 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol. 31, 575–580.Google Scholar
  31. Togo, A.H., Diop, A., Bittar, F., Maraninchi, M., Valero, R., Armstrong, N., Dubourg, G., Labas, N., Richez, M., Delerce, J., et al. 2018. Description of Mediterraneibacter massiliensis, gen. nov., sp. nov., a new genus isolated from the gut microbiota of an obese patient and reclassification of Ruminococcus faecis, Ruminococcus lactaris, Ruminococcus torques, Ruminococcus gnavus and Clostridium glycyrrhizinilyticum as Mediterraneibacter faecis comb. nov., Mediterraneibacter lactaris comb. nov., Mediterraneibacter torques comb. nov., Mediterraneibacter gnavus comb. nov. and Mediterraneibacter glycyrrhizinilyticus comb. nov. Antonie van Leeuwenhoek 111, 2107–2128.CrossRefGoogle Scholar
  32. Van den Abbeele, P., Belzer, C., Goossens, M., Kleerebezem, M., De Vos, W.M., Thas, O., De Weirdt, R., Kerckhof, F.M., and Van de Wiele, T. 2013. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J. 7, 949–961.CrossRefGoogle Scholar
  33. Xiong, H., Guo, B., Gan, Z., Song, D., Lu, Z., Yi, H., Wu, Y., Wang, Y., and Du, H. 2016. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition. Sci. Rep. 6, 27070.CrossRefGoogle Scholar
  34. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.CrossRefGoogle Scholar
  35. Yutin, N. and Galperin, M.Y. 2013. A genomic update on clostridial phylogeny: Gram-negative spore-formers and other misplaced clostridia. Environ. Microbiol. 10, 2631–2641.Google Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • Ji-Sun Kim
    • 1
  • Keun Chul Lee
    • 1
  • Min Kuk Suh
    • 1
  • Kook-Il Han
    • 1
  • Mi Kyung Eom
    • 1
  • Ju Huck Lee
    • 1
  • Seung-Hwan Park
    • 1
  • Se Won Kang
    • 1
  • Jam-Eon Park
    • 1
  • Byeong Seob Oh
    • 1
  • Seung Yeob Yu
    • 1
  • Seung-Hyeon Choi
    • 1
  • Dong Ho Lee
    • 2
  • Hyuk Yoon
    • 2
  • Byung-Yong Kim
    • 3
  • Seung-Jo Yang
    • 3
  • Jung-Sook Lee
    • 1
    • 4
  1. 1.Korean Collection for Type Cultures, Biological Resource CenterKorea Research Institute of Bioscience and BiotechnologyJeongeupRepublic of Korea
  2. 2.Seoul National University Bundang HospitalSeongnamRepublic of Korea
  3. 3.ChunLab Inc.SeoulRepublic of Korea
  4. 4.University of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations