Advertisement

Lipoteichoic acids of lactobacilli inhibit Enterococcus faecalis biofilm formation and disrupt the preformed biofilm

  • Solmin Jung
  • Ok-Jin Park
  • A Reum Kim
  • Ki Bum Ahn
  • Dongwook Lee
  • Kee-Yeon Kum
  • Cheol-Heui Yun
  • Seung Hyun HanEmail author
Article

Abstract

Enterococcus faecalis, a Gram-positive bacterium commonly isolated in patients with refractory apical periodontitis, invades dentin tubules easily and forms biofilms. Bacteria in biofilms, which contribute to recurrent and/or chronic inflammatory diseases, are more resistant to antimicrobial agents than planktonic cells and easily avoid phagocytosis. Although Lactobacillus plantarum lipoteichoic acid (Lp.LTA) is associated with biofilm formation, the effect of Lp.LTA on biofilm formation by E. faecalis is not clearly understood. In this study, we investigated whether Lp.LTA inhibits E. faecalis biofilm formation. The degree of biofilm formation was determined by using crystal violet assay and LIVE/DEAD bacteria staining. The quantification of bacterial growth was determined by measuring the optical density at 600 nm with a spectrophotometer. Formation of biofilms on human dentin slices was observed under a scanning electron microscope. E. faecalis biofilm formation was reduced by Lp.LTA treatment in a dose-dependent manner. Lp.LTA inhibited biofilm development of E. faecalis at the early stage without affecting bacterial growth. LTA from other Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus casei, or Lactobacillus rhamnosus GG also inhibited E. faecalis biofilm formation. In particular, among LTAs from various lactobacilli, Lp.LTA showed the highest inhibitory effect on biofilms formed by E. faecalis. Interestingly, LTAs from lactobacilli could remove the biofilm preformed by E. faecalis. These inhibitory effects were also observed on the surface of human dentin slices. In conclusion, Lactobacillus species LTA inhibits biofilm formation caused by E. faecalis and it could be used as an anti-biofilm agent for prevention or treatment against E. faecalis-associated diseases.

Keywords

biofilm Enterococcus faecalis lipoteichoic acid lactobacilli apical periodontitis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, K.B., Baik, J.E., Park, O.J., Yun, C.H., and Han, S.H. 2018a. Lactobacillus plantarum lipoteichoic acid inhibits biofilm formation of Streptococcus mutans. PLoS One 13, e0192694.Google Scholar
  2. Ahn, K.B., Baik, J.E., Yun, C.H., and Han, S.H. 2018b. Lipoteichoic acid inhibits Staphylococcus aureus biofilm formation. Front. Microbiol. 9, 327.Google Scholar
  3. Arias, C.A., Contreras, G.A., and Murray, B.E. 2010. Management of multidrug-resistant enterococcal infections. Clin. Microbiol. Infect. 16, 555–562.CrossRefGoogle Scholar
  4. Baik, J.E., Ryu, Y.H., Han, J.Y., Im, J., Kum, K.Y., Yun, C.H., Lee, K., and Han, S.H. 2008. Lipoteichoic acid partially contributes to the inflammatory responses to Enterococcus faecalis. J. Endod. 34, 975–982.CrossRefGoogle Scholar
  5. Boles, B.R. and Horswill, A.R. 2008. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 4, e1000052.CrossRefGoogle Scholar
  6. Calo, L., Passali, G.C., Galli, J., Fadda, G., and Paludetti, G. 2011. Role of biofilms in chronic inflammatory diseases of the upper airways. Adv. Otorhinolaryngol. 72, 93–96.Google Scholar
  7. Chen, L., Bu, Q., Xu, H., Liu, Y., She, P., Tan, R., and Wu, Y. 2016. The effect of berberine hydrochloride on Enterococcus faecalis biofilm formation and dispersion in vitro. Microbiol. Res. 186–187, 44–51.CrossRefGoogle Scholar
  8. Distel, J.W., Hatton, J.F., and Gillespie, M.J. 2002. Biofilm formation in medicated root canals. J. Endod. 28, 689–693.CrossRefGoogle Scholar
  9. Duggan, J.M. and Sedgley, C.M. 2007. Biofilm formation of oral and endodontic Enterococcus faecalis. J. Endod. 33, 815–818.CrossRefGoogle Scholar
  10. Fisher, K. and Phillips, C. 2009. The ecology, epidemiology and virulence of Enterococcus. Microbiology 155, 1749–1757.CrossRefGoogle Scholar
  11. He, Z., Liang, J., Zhou, W., Xie, Q., Tang, Z., Ma, R., and Huang, Z. 2016. Effect of the quorum-sensing luxS gene on biofilm formation by Enterococcus faecalis. Eur. J. Oral Sci. 124, 234–240.CrossRefGoogle Scholar
  12. Hong, S.W., Baik, J.E., Kang, S.S., Yun, C.H., Seo, D.G., and Han, S.H. 2014. Lipoteichoic acid of Streptococcus mutans interacts with Toll-like receptor 2 through the lipid moiety for induction of inflammatory mediators in murine macrophages. Mol. Immunol. 57, 284–291.CrossRefGoogle Scholar
  13. Jaffar, N., Ishikawa, Y., Mizuno, K., Okinaga, T., and Maeda, T. 2016. Mature biofilm degradation by potential probiotics: Aggregatibacter actinomycetemcomitans versus Lactobacillus spp. PLoS One 11, e0159466.CrossRefGoogle Scholar
  14. Jhajharia, K., Parolia, A., Shetty, K.V., and Mehta, L.K. 2015. Biofilm in endodontics: A review. J. Int. Soc. Prev. Community Dent. 5, 1–12.CrossRefGoogle Scholar
  15. Kang, S.S., Kim, S.K., Baik, J.E., Ko, E.B., Ahn, K.B., Yun, C.H., and Han, S.H. 2018. Staphylococcal LTA antagonizes the B cell-mitogenic potential of LPS. Sci. Rep. 8, 1496.CrossRefGoogle Scholar
  16. Kang, S.S., Sim, J.R., Yun, C.H., and Han, S.H. 2016. Lipoteichoic acids as a major virulence factor causing inflammatory responses via Toll-like receptor 2. Arch. Pharm. Res. 39, 1519–1529.CrossRefGoogle Scholar
  17. Kaplan, J.B. 2010. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J. Dent. Res. 89, 205–218.CrossRefGoogle Scholar
  18. Kaur, S., Sharma, P., Kalia, N., Singh, J., and Kaur, S. 2018. Antibiofilm properties of the fecal probiotic lactobacilli against Vibrio spp. Front. Cell. Infect. Microbiol. 8, 120.CrossRefGoogle Scholar
  19. Kayaoglu, G. and Orstavik, D. 2004. Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Crit. Rev. Oral Biol. Med. 15, 308–320.CrossRefGoogle Scholar
  20. Kim, K.W., Kang, S.S., Woo, S.J., Park, O.J., Ahn, K.B., Song, K.D., Lee, H.K., Yun, C.H., and Han, S.H. 2017. Lipoteichoic acid of pobiotic Lactobacillus plantarum attenuates Poly I:C-induced IL-8 production in porcine intestinal epithelial cells. Front. Microbiol. 8, 1827.CrossRefGoogle Scholar
  21. Kim, H.G., Kim, N.R., Gim, M.G., Lee, J.M., Lee, S.Y., Ko, M.Y., Kim, J.Y., Han, S.H., and Chung, D.K. 2008. Lipoteichoic acid isolated from Lactobacillus plantarum inhibits lipopolysaccharide- induced TNF-α production in THP-1 cells and endotoxin shock in mice. J. Immunol. 180, 2553–2561.CrossRefGoogle Scholar
  22. Kostakioti, M., Hadjifrangiskou, M., and Hultgren, S.J. 2013. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med. 3, a010306.Google Scholar
  23. Madsen, K.T., Skov, M.N., Gill, S., and Kemp, M. 2017. Virulence factors associated with Enterococcus faecalis infective endocarditis: A mini review. Open Microbiol. J. 11, 1–11.CrossRefGoogle Scholar
  24. Melo, T.A., Dos Santos, T.F., de Almeida, M.E., Junior, L.A., Andrade, E.F., Rezende, R.P., Marques, L.M., and Romano, C.C. 2016. Inhibition of Staphylococcus aureus biofilm by Lactobacillus isolated from fine cocoa. BMC Microbiol. 16, 250.CrossRefGoogle Scholar
  25. Noh, S.Y., Kang, S.S., Yun, C.H., and Han, S.H. 2015. Lipoteichoic acid from Lactobacillus plantarum inhibits Pam2CSK4-induced IL-8 production in human intestinal epithelial cells. Mol. Immunol. 64, 183–189.CrossRefGoogle Scholar
  26. Park, O.J., Han, J.Y., Baik, J.E., Jeon, J.H., Kang, S.S., Yun, C.H., Oh, J.W., Seo, H.S., and Han, S.H. 2013. Lipoteichoic acid of Enterococcus faecalis induces the expression of chemokines via TLR2 and PAFR signaling pathways. J. Leukoc. Biol. 94, 1275–1284.CrossRefGoogle Scholar
  27. Ramachandran Nair, P.N. 1987. Light and electron microscopic studies of root canal flora and periapical lesions. J. Endod. 13, 29–39.CrossRefGoogle Scholar
  28. Ryu, Y.H., Baik, J.E., Yang, J.S., Kang, S.S., Im, J., Yun, C.H., Kim, D.W., Lee, K., Chung, D.K., Ju, H.R., et al. 2009. Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids. Int. Immunopharmacol. 9, 127–133.CrossRefGoogle Scholar
  29. Shokri, D., Khorasgani, M.R., Mohkam, M., Fatemi, S.M., Ghasemi, Y., and Taheri-Kafrani, A. 2018. The inhibition effect of lactobacilli against growth and biofilm formation of Pseudomonas aeruginosa. Probiotics Antimicrob. Proteins 10, 34–42.CrossRefGoogle Scholar
  30. Stewart, P.S. 2015. Antimicrobial tolerance in biofilms. Microbiol. Spectr. 3, MB-0010-2014.Google Scholar
  31. Velusamy, P., Kumar, G.V., Jeyanthi, V., Das, J., and Pachaiappan, R. 2016. Bio-inspired green nanoparticles: Synthesis, mechanism, and antibacterial application. Toxicol. Res. 32, 95–102.CrossRefGoogle Scholar
  32. Vijayaraghavan, R., Mathian, V.M., Sundaram, A.M., Karunakaran, R., and Vinodh, S. 2012. Triple antibiotic paste in root canal therapy. J. Pharm. Bioallied Sci. 4, S230–233.Google Scholar
  33. Yu, D., Zhao, L., Xue, T., and Sun, B. 2012. Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner. BMC Microbiol. 12, 288.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • Solmin Jung
    • 1
  • Ok-Jin Park
    • 1
  • A Reum Kim
    • 1
  • Ki Bum Ahn
    • 1
    • 2
  • Dongwook Lee
    • 1
  • Kee-Yeon Kum
    • 3
  • Cheol-Heui Yun
    • 4
    • 5
  • Seung Hyun Han
    • 1
    Email author
  1. 1.Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of DentistrySeoul National UniversitySeoulRepublic of Korea
  2. 2.Research Division for BiotechnologyKorea Atomic Energy Research InstituteJeongeupRepublic of Korea
  3. 3.Department of Conservative Dentistry, DRI, and Seoul Dental Hospital for Disabled, School of DentistrySeoul National UniversitySeoulRepublic of Korea
  4. 4.Department of Agricultural Biotechnology and Research Institute for Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
  5. 5.Institute of Green Bio Science TechnologySeoul National UniversityPyeongchangRepublic of Korea

Personalised recommendations