Advertisement

Journal of Microbiology

, Volume 57, Issue 4, pp 252–262 | Cite as

Co-occurrence patterns between phytoplankton and bacterioplankton across the pelagic zone of Lake Baikal during spring

  • Ivan S. MikhailovEmail author
  • Yuri S. Bukin
  • Yulia R. Zakharova
  • Marina V. Usoltseva
  • Yuri P. Galachyants
  • Maria V. Sakirko
  • Vadim V. Blinov
  • Yelena V. Likhoshway
Microbial Ecology and Environmental Microbiology

Abstract

Phytoplankton and bacterioplankton play a key role in carbon cycling of aquatic ecosystems. In this study, we found that co-occurrence patterns between different types of phytoplankton, bacterioplankton, and environmental parameters in Lake Baikal during spring were different over the course of three consecutive years. The composition of phytoplankton and bacterial communities was investigated using microscopy and 16S rRNA gene pyrosequencing, respectively. Non-metric multidimensional scaling (NMDS) revealed a relationship between the structure of phytoplankton and bacterial communities and temperature, location, and sampling year. Associations of bacteria with diatoms, green microalgae, chrysophyte, and cryptophyte were identified using microscopy. Cluster analysis revealed similar correlation patterns between phytoplankton abundance, number of attached bacteria, ratio of bacteria per phytoplankton cell and environmental parameters. Positive and negative correlations between different species of phytoplankton, heterotrophic bacteria and environmental parameters may indicate mutualistic or competitive relationships between microorganisms and their preferences to the environment.

Keywords

co-occurrence patterns phytoplankton bacterioplankton algal-bacterial associations Lake Baikal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8531_MOESM1_ESM.pdf (2.7 mb)
Supplementary material, approximately 2.70 MB.

References

  1. Akaike, H. 1998. Information theory and an extension of the maximum likelihood principle, pp. 199–213. In Selected papers of Hirotugu Akaike, Springer, New York, NY, USA.CrossRefGoogle Scholar
  2. Amin, S.A., Parker, M.S., and Armbrust, E.V. 2012. Interactions between diatom and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684.CrossRefGoogle Scholar
  3. Azam, F. and Malfatti, F. 2007. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791.CrossRefGoogle Scholar
  4. Baker, G.C., Smith, J.J., and Cowan, D.A. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55, 541–555.CrossRefGoogle Scholar
  5. Benjamini, Y. and Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300.Google Scholar
  6. Bidle, K.D. and Azam, F. 1999. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397, 508–512.CrossRefGoogle Scholar
  7. Bidle, K.D. and Azam, F. 2001. Bacterial control of silicon regeneration from diatom detritus: Significance of bacterial ectohydrolases and species identity. Limnol. Oceanogr. 46, 1606–1623.CrossRefGoogle Scholar
  8. Buchan, A., Le Cleir, G.R., Gulvik, C.A., and González, J.M. 2014. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698.CrossRefGoogle Scholar
  9. Bunse, C., Bertos-Fortis, M., Sassenhagen, I., Sildever, S., Sjöqvist, C., Godhe, A., Gross, S., Kremp, A., Lips, I., Lundholm, N., et al. 2016. Spatio-temporal interdependence of bacteria and phytoplankton during a Baltic Sea spring bloom. Front. Microbiol. 7, 1–10.CrossRefGoogle Scholar
  10. Csardi, G. and Nepusz, T. 2006. The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9.Google Scholar
  11. Domysheva, V.M., Usoltseva, M.V., Sakirko, M.V., Pestunov, D.A., Shimaraev, M.N., Popovskaya, G.I., and Panchenko, M.V. 2014. Spatial distribution of carbon dioxide fluxes, biogenic elements, and phytoplankton biomass in the pelagic zone of Lake Baikal in spring period of 2010–2012. Atmos. Ocean. Opt. 27, 529–535.CrossRefGoogle Scholar
  12. Eiler, A., Heinrich, F., and Bertilsson, S. 2012. Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J. 6, 330–342.CrossRefGoogle Scholar
  13. Faust, K. and Raes, J. 2012. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550.CrossRefGoogle Scholar
  14. Fogg, G.E. 1983. The ecological significance of extracellular products of phytoplankton photosynthesis. Bot. Mar. 26, 3–14.CrossRefGoogle Scholar
  15. Fortunato, C.S., Eiler, A., Herfort, L., Needoba, J.A., Peterson, T.D., and Crump, B.C. 2013. Determining indicator taxa across spatial and seasonal gradients in the Columbia River coastal margin. ISME J. 7, 1899–1911.CrossRefGoogle Scholar
  16. Fuhrman, J.A. 2009. Microbial community structure and its functional implications. Nature 459, 193–199.CrossRefGoogle Scholar
  17. Gärdes, A., Iversen, M.H., Grossart, H.P., Passow, U., and Ulrich, M.S. 2011. Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J. 5, 436–445.CrossRefGoogle Scholar
  18. Gilbert, J.A., Steele, J.A., Caporaso, J.G., Steinbrück, L., Reeder, J., Temperton, B., Huse, S., McHardy, A.C., Knight, R., Joint, I., et al. 2012. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308.CrossRefGoogle Scholar
  19. Grossart, H.P., Levold, F., Allgaier, M., Simon, M., and Brinkhoff, T. 2005. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 7, 860–873.CrossRefGoogle Scholar
  20. Hollander, M. and Wolfe, D.A. 1973. Nonparametric statistical methods. John Wiley & Sons, New York, USA.Google Scholar
  21. Khodzher, T.V., Domysheva, V.M., Sorokovikova, L.M., Sakirko, M.V., and Tomberg, I.V. 2017. Current chemical composition of Lake Baikal water. Inland Waters 7, 250–258.CrossRefGoogle Scholar
  22. Mayali, X. and Azam, F. 2004. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. 51, 139–144.CrossRefGoogle Scholar
  23. Mayali, X., Franks, P.J.S., and Burton, R.S. 2011. Temporal attachment dynamics by distinct bacterial taxa during a dinoflagellate bloom. Aquat. Microb. Ecol. 63, 111–122.CrossRefGoogle Scholar
  24. Mikhailov, I.S., Zakharova, Y.R., Bukin, Y.S., Galachyants, Y.P., Petrova, D.P., Sakirko, M.V., and Likhoshway, Y.V. 2019. Cooccurrence networks among bacteria and microbial eukaryotes of Lake Baikal during a spring phytoplankton bloom. Microb. Ecol. 77, 96–109.CrossRefGoogle Scholar
  25. Mikhailov, I.S., Zakharova, Y.R., Galachyants, Y.P., Usoltseva, M.V., Petrova, D.P., Sakirko, M.V., Likhoshway, Y.V., and Grachev, M.A. 2015. Similarity of structure of taxonomic bacterial communities in the photic layer of Lake Baikal’s three basins differing in spring phytoplankton composition and abundance. Dokl. Biochem. Biophys. 465, 413–419.CrossRefGoogle Scholar
  26. Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., et al. 2016. Vegan: Community ecology package. version 2.4-1. https://doi.org/CRAN.R-project.org/package=vegan.Google Scholar
  27. Paver, S.F., Hayek, K.R., Gano, K.A., Fagen, J.R., Brown, C.T., Davis-Richardson, A.G., Grabb, D.B., Rosario-Passapera, R., Giongo, A., Triplett, E.W., et al. 2013. Interactions between specific phytoplankton and bacteria affect lake bacterial community succession. Environ. Microbiol. 15, 2489–2504.CrossRefGoogle Scholar
  28. Pearman, J.K., Casas, L., Merle, T., Michell, C., and Irigoien, X. 2015. Bacterial and protist community changes during a phytoplankton bloom. Limnol. Oceanogr. 61, 198–213.CrossRefGoogle Scholar
  29. Pomazkina, G.V., Belykh, O.I., Domysheva, V.M., Sakirko, M.V., and Gnatovskii, R.Y. 2010. Structure and dynamics of the phytoplankton in Southern Baikal (Russia). Int. J. Algae 12, 64–79.CrossRefGoogle Scholar
  30. Popovskaya, G.I., Usol’tseva, M.V., Domysheva, V.M., Sakirko, M.V., Blinov, V.V., and Khodzher, T.V. 2015. The spring phytoplankton in the pelagic zone of Lake Baikal during 2007–2011. Geogr. Nat. Resour. 36, 253–262.CrossRefGoogle Scholar
  31. Porter, K.G. and Feig, Y.S. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943–948.CrossRefGoogle Scholar
  32. Quince, C., Lanzen, A., Davenport, R.J., and Turnbaugh, P.J. 2011. Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12, 1–18.CrossRefGoogle Scholar
  33. Rooney-Varga, J.N., Giewat, M.W., Savin, M.C., Sood, S., LeGresley, M., and Martin, J.L. 2005. Links between phytoplankton and bacterial community dynamics in a coastal marine environment. Microb. Ecol. 49, 163–175.CrossRefGoogle Scholar
  34. Royston, P. 1995. Remark AS R94: a remark on algorithm AS 181: the W-test for normality. J. R. Stat. Soc. Ser. C Appl. Stat. 44, 547–551.Google Scholar
  35. Rösel, S. and Grossart, H.P. 2012. Contrasting dynamics in activity and community composition of free-living and particle-associated bacteria in spring. Aquat. Microb. Ecol. 66, 169–181.CrossRefGoogle Scholar
  36. Sarmento, H. and Gasol, J.M. 2012. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ. Microbiol. 14, 2348–2360.CrossRefGoogle Scholar
  37. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541.CrossRefGoogle Scholar
  38. Shimaraev, M.N., Verbolov, V.I., Granin, N.G., and Sherstayankin, P.P. 1994. Physical limnology of Lake Baikal: a review. Baikal Int. Center for Ecological Research, Irkutsk Okayama, Japan.Google Scholar
  39. Sison-Mangus, M.P., Jiang, S., Tran, K.N., and Kudela, R.M. 2014. Host-specific adaptation governs the interaction of the marine diatom, Pseudo-nitzschia and their microbiota. ISME J. 8, 63–76.CrossRefGoogle Scholar
  40. Smith, E.P. and van Belle, G. 1984. Nonparametric estimation of species richness. Biometrics 40, 119–129.CrossRefGoogle Scholar
  41. Smriga, S., Fernandez, V.I., Mitchell, J.G., and Stocker, R. 2016. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl. Acad. Sci. USA 113, 1576–1581.CrossRefGoogle Scholar
  42. Suzuki, R. and Shimodaira, H. 2006. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542.CrossRefGoogle Scholar
  43. Tan, S., Zhou, J., Zhu, X., Yu, S., Zhan, W., Wang, B., and Cai, Z. 2015. An association network analysis among microeukaryotes and bacterioplankton reveals algal bloom dynamics. J. Phycol. 51, 120–132.CrossRefGoogle Scholar
  44. Teeling, H., Fuchs, B.M., Becher, D., Klockow, C., Gardebrecht, A., Bennke, C.M., Kassabgy, M., Huang, S., Mann, A.J., Waldmann, J., et al. 2012. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611.CrossRefGoogle Scholar
  45. Teeling, H., Fuchs, B.M., Bennke, C.M., Krüger, K., Chafee, M., Kappelmann, L., Reintjes, G., Waldmann, J., Quast, C., Glöckner, F.O., et al. 2016. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. Elife 5, e11888.CrossRefGoogle Scholar
  46. Vacher, C., Tamaddoni-Nezhad, A., Kamenova, S., Peyrard, N., Moalic, Y., Sabbadin R., Schwaller, L., Chiquet, J., Smith, M.A., Vallance, J., et al. 2016. Chapter one-learning ecological networks from next-generation sequencing data. Adv. Ecol. Res. 54, 1–39.CrossRefGoogle Scholar
  47. Warnes, G.R., Bolker, B., Bonebakker, L., Gentleman, R., Huber, W., Liaw, W.H.A., Lumley, T., Maechler, M., Magnusson, A., Moeller, S., et al. 2009. Gplots: Various R programming tools for plotting data. R package version 2.4.Google Scholar
  48. Weiss, S., Van Treuren, W., Lozupone, C., Faust, K., Friedman, J., Deng, Y., Xia, L.C., Xu, Z.Z., Ursell, L., Alm, E.J., et al. 2016. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10, 1669–1681.CrossRefGoogle Scholar
  49. Zakharova, Y.R., Adel’shin, R.V., Parfenova, V.V., Bedoshvili, Y.D., and Likhoshway, Y.V. 2010. Taxonomic characterization of the microorganisms associated with the cultivable diatom Synedra acus from Lake Baikal. Microbiology 79, 679–687.CrossRefGoogle Scholar
  50. Zakharova, Y.R., Galachyants, Y.P., Kurilkina, M.I., Likhoshvay, A.V., Petrova, D.P., Shishlyannikov, S.M., Ravin, N.V., Mardanov, A.V., Beletsky, A.V., and Likhoshway, Y.V. 2013. The structure of microbial community and degradation of diatoms in the deep near-bottom layer of Lake Baikal. PLoS One 8, e59977.CrossRefGoogle Scholar
  51. Zhang, H., Wang, K., Shen, L., Chen, H., Hou, F., Zhou, X., Zhang, D., and Zhu, X. 2018. Microbial community dynamics and assembly follows trajectories of an early spring diatom bloom in a semi-enclosed bay. Appl. Environ. Microbiol. 84, e01000–18.Google Scholar
  52. Znachor, P., Simek, K., and Nedoma, J. 2012. Bacterial colonization of the freshwater planktonic diatom Fragilaria crotonensis. Aquat. Microb. Ecol. 66, 87–94.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  • Ivan S. Mikhailov
    • 1
    • 2
    Email author
  • Yuri S. Bukin
    • 1
    • 2
  • Yulia R. Zakharova
    • 1
    • 2
  • Marina V. Usoltseva
    • 1
  • Yuri P. Galachyants
    • 1
    • 2
  • Maria V. Sakirko
    • 1
  • Vadim V. Blinov
    • 1
  • Yelena V. Likhoshway
    • 1
    • 2
  1. 1.Limnological InstituteSiberian Branch of the Russian Academy of SciencesIrkutskRussia
  2. 2.Irkutsk Scientific CenterSiberian Branch of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations