Advertisement

Journal of Microbiology

, Volume 57, Issue 2, pp 107–112 | Cite as

Paraburkholderia dokdonella sp. nov., isolated from a plant from the genus Campanula

  • Man-Young Jung
  • Myung-Suk Kang
  • Ki-Eun Lee
  • Eun-Young Lee
  • Soo-Je ParkEmail author
Microbial Systematics and Evolutionary Microbiology
  • 49 Downloads

Abstract

The novel Gram-stain-negative, rod-shaped, aerobic bacterial strain DCR-13T was isolated from a native plant belonging to the genus Campanula on Dokdo, an island in the Republic of Korea. Comparative analysis of the 16S rRNA gene sequence indicated that this strain is closely related to Paraburkholderia peleae PP52-1T (98.43% 16S rRNA gene sequence similarity), Paraburkholderia oxyphila NBRC 105797T (98.42%), Paraburkholderia sacchari IPT 101T (98.28%), Paraburkholderia mimosarum NBRC 106338T (97.80%), Paraburkholderia denitrificans KIS30-44T (97.46%), and Paraburkholderia paradise WAT (97.45%). This analysis of the 16S rRNA gene sequence also suggested that DCR-13T and the six closely related strains formed a clade within the genus Paraburkholderia, but that DCR-13T was clearly separated from the established species. DCR-13T had ubiquinone 8 as its predominant respiratory quinone, and its genomic DNA G + C content was 63.9 mol%. The isolated strain grew at a pH of 6.0–8.0 (with an optimal pH of 6.5), 0–4% w/v NaCl (with an optimal level of 0%), and a temperature of 18–42°C (with an optimal temperature of 30°C). The predominant fatty acids were C16:0, summed feature 8 (C18:1ω7c/C18:1ω6c), C17:0 cyclo, C19:0 cyclo ω8c, summed feature 3 (C16:1ω6c/C16:1ω7c) and summed feature 2 (C12:0 aldehyde), and the major polar lipids were phosphatidylglycerol and phosphatidylethanolamine. On the basis of polyphasic evidence, it is proposed that strain DCR-13T (= KCTC 62811T = LMG 30889T) represents the type strain of a novel species, Paraburkholderia dokdonella sp. nov.

Keywords

Paraburkholderia dokdonella sp. nov. Dokdo Campanula novel species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8500_MOESM1_ESM.pdf (259 kb)
Supplementary material, approximately 259 KB.

References

  1. Brämer, C.O., Vandamme, P., da Silva, L.F., Gomez, J.G., and Steinbuchel, A. 2001. Polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil. Int. J. Syst. Evol. Microbiol. 51, 1709–1713.CrossRefGoogle Scholar
  2. Chen, W.M., de Faria, S.M., James, E.K., Elliott, G.N., Lin, K.Y., Chou, J.H., Sheu, S.Y., Cnockaert, M., Sprent, J.I., and Vandamme, P. 2007. Burkholderia nodosa sp. nov., isolated from root nodules of the woody Brazilian legumes Mimosa bimucronata and Mimosa scabrella. Int. J. Syst. Evol. Microbiol. 57, 1055–1059.CrossRefGoogle Scholar
  3. Choi, G.M. and Im, W.T. 2018. Paraburkholderia azotifigens sp. nov., a nitrogen-fixing bacterium isolated from paddy soil. Int. J. Syst. Evol. Microbiol. 68, 310–316.CrossRefGoogle Scholar
  4. Dobritsa, A.P. and Samadpour, M. 2016. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int. J. Syst. Evol. Microbiol. 66, 2836–2846.CrossRefGoogle Scholar
  5. Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39, 224–229.CrossRefGoogle Scholar
  6. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefGoogle Scholar
  7. Gao, Z.H., Zhong, S.F., Lu, Z.E., Xiao, S.Y., and Qiu, L.H. 2018. Paraburkholderia caseinilytica sp. nov., isolated from the pine and broad-leaf mixed forest soil. Int. J. Syst. Evol. Microbiol. 68, 1963–1968.CrossRefGoogle Scholar
  8. Hu, H.Y., Fujie, K., and Urano, K. 1999. Development of a novel solid phase extraction method for the analysis of bacterial quinones in activated sludge with a higher reliability. J. Biosci. Bioeng. 87, 378–382.CrossRefGoogle Scholar
  9. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.CrossRefGoogle Scholar
  10. Koh, H.W., Rani, S., Kim, S.J., Moon, E., Nam, S.W., Rhee, S.K., and Park, S.J. 2017. Halomonas aestuarii sp. nov., a moderately halophilic bacterium isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 67, 4298–4303.CrossRefGoogle Scholar
  11. Koh, H.W., Song, H.S., Song, U., Yim, K.J., Roh, S.W., and Park, S.J. 2015. Halolamina sediminis sp. nov., an extremely halophilic archaeon isolated from solar salt. Int. J. Syst. Evol. Microbiol. 65, 2479–2484.CrossRefGoogle Scholar
  12. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.CrossRefGoogle Scholar
  13. Lee, Y. and Jeon, C.O. 2018. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil. Int. J. Syst. Evol. Microbiol. 68, 1251–1257.CrossRefGoogle Scholar
  14. Lee, C.M., Weon, H.Y., Yoon, S.H., Kim, S.J., Koo, B.S., and Kwon, S.W. 2012. Burkholderia denitrificans sp. nov., isolated from the soil of Dokdo Island, Korea. J. Microbiol. 50, 855–859.CrossRefGoogle Scholar
  15. Nei, M., Kumar, S., and Takahashi, K. 1998. The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proc. Natl. Acad. Sci. USA 95, 12390–12397.CrossRefGoogle Scholar
  16. Otsuka, Y., Muramatsu, Y., Nakagawa, Y., Matsuda, M., Nakamura, M., and Murata, H. 2011. Burkholderia oxyphila sp. nov., a bacterium isolated from acidic forest soil that catabolizes (+)-catechin and its putative aromatic derivatives. Int. J. Syst. Evol. Microbiol. 61, 249–254.CrossRefGoogle Scholar
  17. Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., and Glockner, F.O. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196.CrossRefGoogle Scholar
  18. Richter, M. and Rossello-Mora, R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106, 19126–19131.CrossRefGoogle Scholar
  19. Rodriguez-R, L.M. and Konstantinidis, K.T. 2014. Bypassing cultivation to identify bacterial species. Microbe 9, 111–118.Google Scholar
  20. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.Google Scholar
  21. Sawana, A., Adeolu, M., and Gupta, R.S. 2014. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front. Genet. 5, 429.CrossRefGoogle Scholar
  22. Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., et al. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Evol. Microbiol. 37, 463–464.CrossRefGoogle Scholar
  23. Weber, C.F. and King, G.M. 2017. Volcanic soils as sources of novel CO-oxidizing Paraburkholderia and Burkholderia: Paraburkholderia hiiakae sp. nov., Paraburkholderia metrosideri sp. nov., Paraburkholderia paradisi sp. nov., Paraburkholderia peleae sp. nov., and Burkholderia alpina sp. nov. a member of the Burkholderia cepacia complex. Front. Microbiol. 8, 207.Google Scholar
  24. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.CrossRefGoogle Scholar
  25. Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T., and Arakawa, M. 1992. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol. 36, 1251–1275.CrossRefGoogle Scholar
  26. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • Man-Young Jung
    • 1
  • Myung-Suk Kang
    • 2
  • Ki-Eun Lee
    • 3
  • Eun-Young Lee
    • 3
  • Soo-Je Park
    • 4
    Email author
  1. 1.Department of Microbiology and Ecosystem Science, Division of Microbial EcologyUniversity of ViennaViennaAustria
  2. 2.Biological Resources Utilization DepartmentNational Institute of Biological ResourcesIncheonRepublic of Korea
  3. 3.Microorganism Resources DivisionNational Institute of Biological ResourcesIncheonRepublic of Korea
  4. 4.Department of BiologyJeju National UniversityJejuRepublic of Korea

Personalised recommendations