Advertisement

Journal of Microbiology

, Volume 57, Issue 1, pp 30–37 | Cite as

Community structures and genomic features of undesirable white colony-forming yeasts on fermented vegetables

  • Joon Yong Kim
  • Juseok Kim
  • In-Tae Cha
  • Min Young Jung
  • Hye Seon Song
  • Yeon Bee Kim
  • Changsu Lee
  • Seung-Yeon Kang
  • Jin-Woo Bae
  • Yoon-E Choi
  • Tae-Woon KimEmail author
  • Seong Woon RohEmail author
Microbial Ecology and Environmental Microbiology

Abstract

White colony-forming yeasts (WCFYs) often appear in fermented foods, depending on the storage method. Despite the ongoing research on fermented foods, the community and genome features of WCFYs have not been well studied. In this study, the community structures of WCFYs on fermented vegetables (kimchi) prepared with various raw materials were investigated using deep sequencing. Only eight operational taxonomic units (OTUs) were detected, indicating that the community structure of WCFYs on kimchi is very simple. The five most abundant OTUs represented Pichia kluyveri, Yarrowia lipolytica, Candida sake, Hanseniaspora uvarum, and Kazachstania servazzii. Using a culture-dependent method, 41 strains representing the five major OTUs were isolated from the surface of the food samples. Whole genomes of the five major yeast strains were sequenced and annotated. The total genome length for the strains ranged from 8.97 Mbp to 21.32 Mbp. This is the first study to report genome sequences of the two yeasts Pichia kluyveri and Candida sake. Genome analysis indicated that each yeast strain had core metabolic pathways such as oxidative phosphorylation; purine metabolism; glycolysis/gluconeogenesis; aminoacyl-tRNA biosynthesis; citrate cycle; but strain specific pathways were also found. In addition, no toxin or antimicrobial resistance genes were identified. Our study provides genome information for five WCFY strains that may highlight their potential beneficial or harmful metabolic effects in fermented vegetables.

Keywords

white colony-forming yeast fermented vegetable kimchi community structure genomic feature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8487_MOESM1_ESM.pdf (292 kb)
Supplementary material, approximately 292 KB.

References

  1. Albertin, W., Setati, M.E., Miot-Sertier, C., Mostert, T.T., Colonna-Ceccaldi, B., Coulon, J., Girard, P., Moine, V., Pillet, M., Salin, F., et al. 2015. Hanseniaspora uvarum from winemaking environments show spatial and temporal genetic clustering. Front. Microbiol. 6, 1569.Google Scholar
  2. Amara, A.A. and Shibl, A. 2015. Role of probiotics in health improvement, infection control and disease treatment and management. Saudi Pharm. J. 23, 107–114.CrossRefGoogle Scholar
  3. Barth, G. and Gaillardin, C. 1997. Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol. Rev. 19, 219–237.CrossRefGoogle Scholar
  4. Bellemain, E., Carlsen, T., Brochmann, C., Coissac, E., Taberlet, P., and Kauserud, H. 2010. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology 10, 189.CrossRefGoogle Scholar
  5. Buhagiar, R.W. and Barnett, J.A. 1971. The yeasts of strawberries. J. Appl. Bacteriol. 34, 727–739.CrossRefGoogle Scholar
  6. Cantarel, B.L., Korf, I., Robb, S.M., Parra, G., Ross, E., Moore, B., Holt, C., Sanchez Alvarado, A., and Yandell, M. 2008. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196.CrossRefGoogle Scholar
  7. Capece, A., Fiore, C., Maraz, A., and Romano, P. 2005. Molecular and technological approaches to evaluate strain biodiversity in Hanseniaspora uvarum of wine origin. J. Appl. Microbiol. 98, 136–144.CrossRefGoogle Scholar
  8. Carrau, F., Gaggero, C., and Aguilar, P.S. 2015. Yeast diversity and native vigor for flavor phenotypes. Trends Biotechnol. 33, 148–154.CrossRefGoogle Scholar
  9. Francisco, J., Narváez-Zapata, J.A., and Larralde-Corona, C.P. 2017. Microbial diversity and flavor quality of fermented beverages, pp. 125–154 In Microbial production of food ingredients and additives. Elsevier.Google Scholar
  10. Hittinger, C.T., Steele, J.L., and Ryder, D.S. 2018. Diverse yeasts for diverse fermented beverages and foods. Curr. Opin. Biotechnol. 49, 199–206.CrossRefGoogle Scholar
  11. Jung, J.Y., Lee, S.H., and Jeon, C.O. 2014. Kimchi microflora: history, current status, and perspectives for industrial kimchi production. Appl. Microbiol. Biotechnol. 98, 2385–2393.CrossRefGoogle Scholar
  12. Kontis, V., Bennett, J.E., Mathers, C.D., Li, G., Foreman, K., and Ezzati, M. 2017. Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. Lancet 389, 1323–1335.CrossRefGoogle Scholar
  13. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.CrossRefGoogle Scholar
  14. Kurtzman, C.P. and Robnett, C.J. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73, 331–371.CrossRefGoogle Scholar
  15. Lanciotti, R., Gianotti, A., Baldi, D., Angrisani, R., Suzzi, G., Mastrocola, D., and Guerzoni, M. 2005. Use of Yarrowia lipolytica strains for the treatment of olive mill wastewater. Bioresour. Technol. 96, 317–322.CrossRefGoogle Scholar
  16. Letunic, I., Yamada, T., Kanehisa, M., and Bork, P. 2008. iPath: interactive exploration of biochemical pathways and networks. Trends Biochem. Sci. 33, 101–103.Google Scholar
  17. Lu, Y., Voon, M.K.W., Chua, J.Y., Huang, D., Lee, P.R., and Liu, S.Q. 2017. The effects of co-and sequential inoculation of Torulaspora delbrueckii and Pichia kluyveri on chemical compositions of durian wine. Appl. Microbiol. Biotechnol. 101, 7853–7863.CrossRefGoogle Scholar
  18. Marco, M.L., Heeney, D., Binda, S., Cifelli, C.J., Cotter, P.D., Foligne, B., Gänzle, M., Kort, R., Pasin, G., and Pihlanto, A. 2017. Health benefits of fermented foods: microbiota and beyond. Curr. Opin. Biotechnol. 44, 94–102.CrossRefGoogle Scholar
  19. Marsh, A.J., Hill, C., Ross, R.P., and Cotter, P.D. 2014. Fermented beverages with health-promoting potential: past and future perspectives. Trends Food Sci. Technol. 38, 113–124.CrossRefGoogle Scholar
  20. Mei, J., Guo, Q., Wu, Y., and Li, Y. 2014. Microbial diversity of a camembert-type cheese using freeze-dried Tibetan kefir coculture as starter culture by culture-dependent and culture-independent methods. PLoS One 9, e111648.CrossRefGoogle Scholar
  21. Membré, J.M., Kubaczka, M., and Chéné, C. 1999. Combined effects of pH and sugar on growth rate of Zygosaccharomyces rouxii, a bakery product spoilage yeast. Appl. Environ. Microbiol. 65, 4921–4925.Google Scholar
  22. Moon, S.H., Chang, M., Kim, H.Y., and Chang, H.C. 2014. Pichia kudriavzevii is the major yeast involved in film-formation, offodor production, and texture-softening in over-ripened Kimchi. Food Sci. Biotechnol. 23, 489–497.CrossRefGoogle Scholar
  23. Mukherjee, S., Stamatis, D., Bertsch, J., Ovchinnikova, G., Verezemska, O., Isbandi, M., Thomas, A.D., Ali, R., Sharma, K., Kyrpides, N.C., et al. 2017. Genomes online database (GOLD) v.6: data updates and feature enhancements. Nucleic Acids Res. 45, D446–D456.Google Scholar
  24. Nout, M.J.R. and Aidoo, K.E. 2002. Asian fungal fermented food, pp. 23–47. In Industrial applications. Springer.Google Scholar
  25. Oh, Y.J., Jang, J.Y., Lim, S.K., Kwon, M.S., Lee, J., Kim, N., Shin, M.Y., Park, H.K., Seo, M.J., and Choi, H.J. 2017. Virgibacillus kimchii sp. nov., a halophilic bacterium isolated from kimchi. J. Microbiol. 55, 933–938.CrossRefGoogle Scholar
  26. Papanikolaou, S. and Aggelis, G. 2002. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour. Technol. 82, 43–49.CrossRefGoogle Scholar
  27. Polonelli, L., Menozzi, M.G., Campani, L., Gerloni, M., Conti, S., Morace, G., and Chezzi, C. 1992. Anaerobic yeast killer systems. Eur. J. Epidemiol. 8, 471–476.CrossRefGoogle Scholar
  28. Quirós, M., Rojas, V., Gonzalez, R., and Morales, P. 2014. Selection of non-Saccharomyces yeast strains for reducing alcohol levels in wine by sugar respiration. Int. J. Food Microbiol. 181, 85–91.CrossRefGoogle Scholar
  29. Rima, H., Steve, L., and Ismail, F. 2012. Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front. Microbiol. 3, 421.Google Scholar
  30. Roh, S.W., Kim, K.H., Nam, Y.D., Chang, H.W., Park, E.J., and Bae, J.W. 2010. Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J. 4, 1–16.CrossRefGoogle Scholar
  31. Romano, P., Fiore, C., Paraggio, M., Caruso, M., and Capece, A. 2003. Function of yeast species and strains in wine flavour. Int. J. Food Microbiol. 86, 169–180.CrossRefGoogle Scholar
  32. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.Google Scholar
  33. Spanoghe, M., Godoy Jara, M., Riviere, J., Lanterbecq, D., Gadenne, M., and Marique, T. 2017. Development and application of a quantitative real-time PCR assay for rapid detection of the multifaceted yeast Kazachstania servazzii in food. Food Microbiol. 62, 133–140.CrossRefGoogle Scholar
  34. Suzuki, A., Muraoka, N., Nakamura, M., Yanagisawa, Y., and Amachi, S. 2018. Identification of undesirable white-colony-forming yeasts appeared on the surface of Japanese kimchi. Biosci. Biotechnol. Biochem. 82, 334–342.CrossRefGoogle Scholar
  35. Tai, M. and Stephanopoulos, G. 2013. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab. Eng. 15, 1–9.CrossRefGoogle Scholar
  36. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.CrossRefGoogle Scholar
  37. Tominaga, T. 2004. Rapid identification of pickle yeasts by fluorescent PCR and microtemperature-gradient gel electrophoresis. FEMS Microbiol. Lett. 238, 43–48.CrossRefGoogle Scholar
  38. Vinas, I., Usall, J., Teixidó, N., and Sanchis, V. 1998. Biological control of major postharvest pathogens on apple with Candida sake. Int. J. Food Microbiol. 40, 9–16.CrossRefGoogle Scholar
  39. Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q., Wortman, J., Young, S.K., et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963.CrossRefGoogle Scholar
  40. Yang, F., Hanna, M.A., and Sun, R. 2012. Value-added uses for crude glycerol--a byproduct of biodiesel production. Biotechnol. Biofuels 5, 13.CrossRefGoogle Scholar
  41. Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., Aarestrup, F.M., and Larsen, M.V. 2012. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • Joon Yong Kim
    • 1
  • Juseok Kim
    • 2
    • 3
  • In-Tae Cha
    • 2
  • Min Young Jung
    • 2
  • Hye Seon Song
    • 2
  • Yeon Bee Kim
    • 2
  • Changsu Lee
    • 2
  • Seung-Yeon Kang
    • 2
  • Jin-Woo Bae
    • 1
  • Yoon-E Choi
    • 3
  • Tae-Woon Kim
    • 2
    Email author
  • Seong Woon Roh
    • 2
    Email author
  1. 1.Department of BiologyKyung Hee UniversitySeoulRepublic of Korea
  2. 2.Microbiology and Functionality Research GroupWorld Institute of KimchiGwangjuRepublic of Korea
  3. 3.Division of Environmental Science & Ecological EngineeringKorea UniversitySeoulRepublic of Korea

Personalised recommendations