Advertisement

Journal of Microbiology

, Volume 57, Issue 1, pp 54–63 | Cite as

Metabolomic profiling reveals enrichment of cordycepin in senescence process of Cordyceps militaris fruit bodies

  • Junsang Oh
  • Deok-Hyo Yoon
  • Bhushan Shrestha
  • Hyung-Kyoon ChoiEmail author
  • Gi-Ho SungEmail author
Microbial Physiology and Biochemistry

Abstract

Cordyceps militaris is a species of Cordyceps that is classified in the Cordycipitaceae family and is well known in East Asia as a traditional medicinal mushroom. Its artificial fruit body has been widely cultivated for commercial use in cosmetics, functional food, and medicine. To explore the metabolites associated with fruit body development, we conducted gas chromatography mass spectrometry (GC-MS) analyses based on developmental stage, which was divided into the growth period (stage 1, stage 2, and stage 3) and aging period (stage 4). We detected 39 biochemical metabolites associated with nucleotide, carbohydrate, and amino acid metabolism. Cordycepin, one of the representative bioactive compounds in C. militaris, was significantly enriched in stage 4 of aging period and is associated with glucose accumulation. The accumulation of cordycepin in stage 4 of aging period also seems to be related to the glutamine and glutamic acid pathway. Our results also showed enrichment of other bioactive compounds such as mannitol and xylitol in stage 4 of aging period. Our metabolomic profiling based on the developmental stages of C. militaris is useful for exploring bioactive compounds (e.g., cordycepin, mannitol, GABA, and xylitol) that are enriched in stage 4 of aging period and understanding the biosynthetic mechanisms associated with cordycepin production. Through optimization of fruit body cultivation by selecting stage 4 of aging period as a harvesting time, our findings can be utilized in food and medical applications of C. militaris in future.

Keywords

Cordyceps militaris GC-MS profile cordycepin metabolic pathway medicinal mushroom 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8486_MOESM1_ESM.pdf (529 kb)
Supplementary material, approximately 529 KB.

References

  1. Chatterjee, R., Srinivasan, K.S., and Maiti, P.C. 1957. Cordyceps sinensis (Berkeley) saccardo: Structure of cordycepic acid. J. Am. Pharm. Assoc. 46, 114–118.CrossRefGoogle Scholar
  2. Das, S.K., Masuda, M., Hatashita, M., Sakurai, A., and Sakakibara, M. 2010. Optimization of culture medium for cordycepin production using Cordyceps militaris mutant obtained by ion beam irradiation. Process Biochem. 45, 129–132.CrossRefGoogle Scholar
  3. Erecińska, M. and Silver, I.A. 1990. Metabolism and role of glutamate in mammalian brain. Prog. Neurobiol. 35, 245–296.CrossRefGoogle Scholar
  4. Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikström, C., and Wold, S. 2006. Multi-and megavariate data analysis: Part II: Advanced applications and method extensions. Umetrics Inc. Umea, Sweden.Google Scholar
  5. Horton, H.R., Moran, L.A., Ochs, R.S., Rawn, D.J., and Scimgeour, K.G. 2002. Principles of Biochemistry, 3rd Ed. Prentice Hall Inc., Upper Saddle River, N.J., USA.Google Scholar
  6. Hyun, S.H., Lee, S.Y., Sung, G.H., Kim, S.H., and Choi, H.K. 2013. Metabolic profiles and free radical scavenging activity of Cordyceps bassiana fruiting bodies according to developmental stage. PLoS One 8, e73065.CrossRefGoogle Scholar
  7. Jung, E.C., Kim, K.D., Bae, C.H., Kim, J.C., Kim, D.K., and Kim, H.H. 2007. A mushroom lectin from ascomycete Cordyceps militaris. Biochim. Biophys. Acta 1770, 833–838.CrossRefGoogle Scholar
  8. Kang, N., Lee, H.H., Park, I., and Seo, Y.S. 2017. Development of high cordycepin-producing Cordyceps militaris strains. Mycobiology 45, 31–38.CrossRefGoogle Scholar
  9. Kang, C., Wen, T.C., Kang, J.C., Meng, Z.B., Li, G.R., and Hyde, K.D. 2014. Optimization of large-scale culture conditions for the production of cordycepin with Cordyceps militaris by liquid static culture. Sci. World J. 2014, 510627.Google Scholar
  10. Kodama, E.N., McCaffrey, R.P., Yusa, K., and Mitsuya, H. 2000. Antileukemic activity and mechanism of action of cordycepin against terminal deoxynucleotidyl transferase-positive (TdT+) leukemic cells. Biochem. Pharmacol. 59, 273–281.CrossRefGoogle Scholar
  11. Leung, P.H. and Wu, J.Y. 2007. Effects of ammonium feeding on production of bioactive metabolites (cordycepin and exopolysaccharides) in mycelial culture of a Cordyceps sinensis fungus. J. Appl. Microbiol. 103, 1942–1949.CrossRefGoogle Scholar
  12. Lü, J.M., Lin, P.H., Yao, Q., and Chen, C. 2010. Chemical and mole cular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 14, 840–860.CrossRefGoogle Scholar
  13. Mao, X.B., Eksriwong, T., Chauvatcharin, S., and Zhong, J.J. 2005. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochem. 40, 1667–1672.CrossRefGoogle Scholar
  14. Ng, T.B. and Wang, H.X. 2005. Pharmacological actions of Cordyceps, a prized folk medicine. J. Pharm. Pharmacol. 57, 1509–1519.CrossRefGoogle Scholar
  15. Nomani, A.Z., Nabi, Z., Rashid, H., Janjua, J., Nomani, H., Majeed, A., Chaudry, S.R. and Mazhar, A.S. 2014. Osmotic nephrosis with mannitol: review article Ren. Fail. 36, 1169–1176.CrossRefGoogle Scholar
  16. Oh, T.J., Hyun, S.H., Lee, S.G., Chun, Y.J., Sung, G.H., and Choi, H.K. 2014. NMR and GC-MS based metabolic profiling and free-radical scavenging activities of Cordyceps pruinosa mycelia cultivated under different media and light conditions. PLoS One 9, e90823.CrossRefGoogle Scholar
  17. Ouyang, Y.Y., Zhang, Z., Cao, Y.R., Zhang, Y.Q., Tao, Y.Y., Liu, C.H., Xu, L.M., and Guo, J.S. 2013. Effects of cordyceps acid and cordycepin on the inflammatory and fibrogenic response of hepatic stellate cells. Zhonghua Gan Zang Bing Za Zhi 21, 275–278.Google Scholar
  18. Park, J.P., Kim, S.W., Hwang, H.J., and Yun, J.W. 2001. Optimization of submerged culture conditions for the mycelial growth and exo‐biopolymer production by Cordyceps militaris. Lett. Appl. Microbiol. 33, 76–81.CrossRefGoogle Scholar
  19. Park, E.J. and Lee, W.Y. 2010. Tryptophan enhanced accumulation of phenolic compounds via chorismate mutase activation in the Ganoderma neo-japonicum mycelia. J. Korean Soc. Appl. Biol. Chem. 53, 364–370.CrossRefGoogle Scholar
  20. Parsons, H.M., Ekman, D.R., Collette, T.W., and Viant, M.R. 2009. Spectral relative standard deviation: A practical benchmark in metabolomics. Analyst 134, 478–485.CrossRefGoogle Scholar
  21. Paterson, R.R. 2008. Cordyceps: A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 69, 1469–1495.CrossRefGoogle Scholar
  22. Raethong, N., Laoteng, K., and Vongsangnak, W. 2018. Uncovering global metabolic response to cordycepin production in Cordyceps militaris through transcriptome and genome-scale network-driven analysis. Sci. Rep. 8, 9250.CrossRefGoogle Scholar
  23. Saito, K. and Matsuda, F. 2010. Metabolomics for functional genomics, systems biology, and biotechnology. Annu. Rev. Plant Biol. 61, 463–489.CrossRefGoogle Scholar
  24. Shih, I.L., Tsai, K.L., and Hsieh, C. 2007. Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris. Biochem. Eng. J. 33, 193–201.CrossRefGoogle Scholar
  25. Shrestha, B., Tanaka, E., Han, J.G., Oh, J., Han, S.K., and Sung, G.H. 2014. A brief chronicle of the genus Cordyceps Fr., the oldest valid genus Cordycipitaceae (Hypocreales, Ascomycota). Mycobiology 42, 93–99.CrossRefGoogle Scholar
  26. Shrestha, B., Zhang, W., Zhang, Y., and Liu, X. 2012. The medicinal fungus Cordyceps militaris: Research and development. Mycol. Prog. 11, 599–614.CrossRefGoogle Scholar
  27. Shurubor, Y.I., Paolucci, U., Krasnikov, B.F., Matson, W.R., and Kristal, B.S. 2005. Analytical precision, biological variation, and mathematical normalization in high data density metabolomics. Metabolomics 1, 75–85.CrossRefGoogle Scholar
  28. Struzyńska, L. and Sulkowski, G. 2004. Relationships between glutamine, glutamate, and GABA in nerve endings under Pb-toxicity conditions. J. Inorg. Biochem. 98, 951–958.CrossRefGoogle Scholar
  29. Su, N.W., Wu, S.H., Chi, C.W., Liu, C.J., Tsai, T.H., and Chen, Y.J. 2017. Metronomic cordycepin therapy prolongs survival of oral cancer-bearing mice and inhibits epithelial-mesenchymal transition. Molecules 22, 629.CrossRefGoogle Scholar
  30. Sung, G.H., Hywel-Jones, N.L., Sung, J.M., Luangsa-ard, J.J., Shrestha, B., and Spatafora, J.W. 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 57, 5–59.CrossRefGoogle Scholar
  31. Tuli, H.S., Kashyap, D., and Sharma, A.K. 2015. Cordycepin: A Cordyceps metabolite with promising therapeutic potential, pp. 1–22. In Merillon, J.M. and Ramawat, K. (eds.), Fungal metabolites. Reference Series in Phytochemistry. Springer.Google Scholar
  32. Tuli, H.S., Sharma, A.K., Sandhu, S.S., and Kashyap, D. 2013. Cordycepin: A bioactive metabolite with therapeutic potential. Life Sci. 93, 863–869.CrossRefGoogle Scholar
  33. Wada, T., Sumardika, I.W., Saito, S., Ruma, I.M.W., Kondo, E., Shibukawa, M., and Sakaguchi, M. 2017. Identification of a novel component leading to anti-tumor activity besides the major ingredient cordycepin in Cordyceps militaris extract. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1061–1062, 209–219.CrossRefGoogle Scholar
  34. Won, S.Y. and Park, E.H. 2005. Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris. J. Ethnopharmacol. 96, 555–561.CrossRefGoogle Scholar
  35. Xia, Y., Luo, F., Shang, Y., Chen, P., Lu, Y., and Wang, C. 2017. Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell. Chem. Biol. 24, 1479–1489.CrossRefGoogle Scholar
  36. Xia, J., Sinelnikov, I.V., Han, B., and Wishart, D.S. 2015. Metabo-Analyst 3.0-making metabolomics more meaningful. Nucleic Acids Res. 43, W251–W257.Google Scholar
  37. Yoo, H.S., Shin, J.W., Cho, J.H., Son, C.G., Lee, Y.W., Park, S.Y., and Cho, C.K. 2004. Effects of Cordyceps militaris extract on angiogenesis and tumor growth. Acta Pharmacol. Sin. 25, 657–665.Google Scholar
  38. Yu, H.M., Wang, B.S., Huang, S.C., and Duh, P.D. 2006. Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. J. Agric. Food Chem. 54, 3132–3138.CrossRefGoogle Scholar
  39. Zhang, Q., Liu, Y., Di, Z., Han, C.C., and Liu, Z. 2016. The strategies for increasing cordycepin production of Cordyceps militaris by liquid fermentation. Fungal Genom. Biol. 6, 134.CrossRefGoogle Scholar
  40. Zheng, P., Xia, Y., Xiao, G., Xiong, C., Hu, X., Zhang, S., Zheng, H., Huang, Y., Zhou, Y., Wang, S., et al. 2011. Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 12, R116.Google Scholar
  41. Zhou, X., Meyer, C.U., Schmidtke, P., and Zepp, F. 2002. Effect of cordycepin on interleukin-10 production of human peripheral blood mononuclear cells. Eur. J. Pharmacol. 453, 309–317.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Translational Research Division, Biomedical Institute of Mycological Resource, International St. Mary’s Hospital and College of MedicineCatholic Kwandong UniversityIncheonRepublic of Korea
  2. 2.College of PharmacyChung-Ang UniversitySeoulRepublic of Korea
  3. 3.Mushtech Cordyceps InstituteHoengseongRepublic of Korea
  4. 4.Department of Microbiology, College of MedicineCatholic Kwandong UniversityGangneungRepublic of Korea

Personalised recommendations