Journal of Microbiology

, Volume 57, Issue 1, pp 9–17 | Cite as

Synthetic lethal interaction between oxidative stress response and DNA damage repair in the budding yeast and its application to targeted anticancer therapy

  • Ji Eun Choi
  • Woo-Hyun ChungEmail author


Synthetic lethality is an extreme form of negative genetic epistasis that arises when a combination of functional deficiency in two or more genes results in cell death, whereas none of the single genetic perturbations are lethal by themselves. This unconventional genetic interaction is a modification of the concept of essentiality that can be exploited for the purpose of targeted cancer therapy. The yeast Saccharomyces cerevisiae has been pivotally used for early large-scale synthetic lethal screens due to its experimental advantages, but recent advances in gene silencing technology have now made direct high-throughput analysis possible in higher organisms. Identification of tumor-specific alterations and characterization of the mechanistic principles underlying synthetic lethal interaction are the key to applying synthetic lethality to clinical cancer treatment by enabling genome-driven oncological research. Here, we provide emerging ideas on the synthetic lethal interactions in budding yeast, particularly between cellular processes responsible for oxidative stress response and DNA damage repair, and discuss how they can be appropriately utilized for context-dependent cancer therapeutics.


synthetic lethality genetic interaction oxidative stress response DNA double-strand break repair damage checkpoint signaling anticancer therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, A., Cai, S.L., Kim, J., Nanez, A., Sahin, M., MacLean, K.H., Inoki, K., Guan, K.L., Shen, J., Person, M.D., et al. 2010. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl. Acad. Sci. USA 107, 4153–4158.CrossRefGoogle Scholar
  2. Ashworth, A. and Lord, C.J. 2018. Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat. Rev. Clin. Oncol. 15, 564–576.CrossRefGoogle Scholar
  3. Bandyopadhyay, S., Mehta, M., Kuo, D., Sung, M.K., Chuang, R., Jaehnig, E.J., Bodenmiller, B., Licon, K., Copeland, W., Shales, M., et al. 2010. Rewiring of genetic networks in response to DNA damage. Science 330, 1385–1389.CrossRefGoogle Scholar
  4. Bender, A. and Pringle, J.R. 1991. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 1295–1305.CrossRefGoogle Scholar
  5. Bitler, B.G., Watson, Z.L., Wheeler, L.J., and Behbakht, K. 2017. PARP inhibitors: Clinical utility and possibilities of overcoming resistance. Gynecol. Oncol. 147, 695–704.CrossRefGoogle Scholar
  6. Boucher, B. and Jenna, S. 2013. Genetic interaction networks: Better understand to better predict. Front. Genet. 4, 290.CrossRefGoogle Scholar
  7. Bridges, C. 1922. The origin of variations in sexual and sex-limited characters. Am. Nat. 56, 51–63.CrossRefGoogle Scholar
  8. Bryant, H.E., Schultz, N., Thomas, H.D., Parker, K.M., Flower, D., Lopez, E., Kyle, S., Meuth, M., Curtin, N.J., and Helleday, T. 2005. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917.CrossRefGoogle Scholar
  9. Byrne, A.B., Weirauch, M.T., Wong, V., Koeva, M., Dixon, S.J., Stuart, J.M., and Roy, P.J. 2007. A global analysis of genetic interactions in Caenorhabditis elegans. J. Biol. 6, 8.CrossRefGoogle Scholar
  10. Cadet, J. and Davies, K.J.A. 2017. Oxidative DNA damage & repair: An introduction. Free Radic. Biol. Med. 107, 2–12.CrossRefGoogle Scholar
  11. Cam, H., Easton, J.B., High, A., and Houghton, P.J. 2010. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1α. Mol. Cell 40, 509–520.Google Scholar
  12. Carter, C.D., Kitchen, L.E., Au, W.C., Babic, C.M., and Basrai, M.A. 2005. Loss of SOD1 and LYS7 sensitizes Saccharomyces cerevisiae to hydroxyurea and DNA damage agents and downregulates MEC1 pathway effectors. Mol. Cell. Biol. 25, 10273–10285.CrossRefGoogle Scholar
  13. Choi, J.E., Heo, S.H., Kim, M.J., and Chung, W.H. 2018. Lack of superoxide dismutase in a rad51 mutant exacerbates genomic instability and oxidative stress-mediated cytotoxicity in Saccharomyces cerevisiae. Free Radic. Biol. Med. 129, 97–106.CrossRefGoogle Scholar
  14. Chung, W.H. 2016. Mechanisms of a novel anticancer therapeutic strategy involving atmospheric pressure plasma-mediated apoptosis and DNA strand break formation. Arch. Pharm. Res. 39, 1–9.CrossRefGoogle Scholar
  15. Chung, W.H. 2017. Unraveling new functions of superoxide dismutase using yeast model system: Beyond its conventional role in superoxide radical scavenging. J. Microbiol. 55, 409–416.CrossRefGoogle Scholar
  16. Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E.D., Sevier, C.S., Ding, H., Koh, J.L., Toufighi, K., Mostafavi, S., et al. 2010. The genetic landscape of a cell. Science 327, 425–431.CrossRefGoogle Scholar
  17. Davierwala, A.P., Haynes, J., Li, Z., Brost, R.L., Robinson, M.D., Yu, L., Mnaimneh, S., Ding, H., Zhu, H., Chen, Y., et al. 2005. The synthetic genetic interaction spectrum of essential genes. Nat. Genet. 37, 1147–1152.CrossRefGoogle Scholar
  18. Dixon, S.J., Fedyshyn, Y., Koh, J.L., Prasad, T.S., Chahwan, C., Chua, G., Toufighi, K., Baryshnikova, A., Hayles, J., Hoe, K.L., et al. 2008. Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc. Natl. Acad. Sci. USA 105, 16653–16658.CrossRefGoogle Scholar
  19. Dixon, S.J., Costanzo, M., Baryshnikova, A., Andrews, B., and Boone, C. 2009. Systematic mapping of genetic interaction networks. Annu. Rev. Genet. 43, 601–625.CrossRefGoogle Scholar
  20. Dizdaroglu, M. 2012. Oxidatively induced DNA damage: Mechanisms, repair and disease. Cancer Lett. 327, 26–47.CrossRefGoogle Scholar
  21. Farmer, H., McCabe, N., Lord, C.J., Tutt, A.N., Johnson, D.A., Richardson, T.B., Santarosa, M., Dillon, K.J., Hickson, I., Knights, C., et al. 2005. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921.CrossRefGoogle Scholar
  22. Foury, F. 1997. Human genetic diseases: a cross-talk between man and yeast. Gene 195, 1–10.CrossRefGoogle Scholar
  23. Georgi, B., Voight, B.F., and Bućan, M. 2013. From mouse to human: Evolutionary genomics analysis of human orthologs of essential genes. PLoS Genet. 9, e1003484.CrossRefGoogle Scholar
  24. Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Véronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., André, B., et al. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.CrossRefGoogle Scholar
  25. Glasauer, A. and Chandel, N.S. 2014. Targeting antioxidants for cancer therapy. Biochem. Pharmacol. 92, 90–101.CrossRefGoogle Scholar
  26. Guarente, L. 1993. Synthetic enhancement in gene interaction: A genetic tool come of age. Trends Genet. 9, 362–366.CrossRefGoogle Scholar
  27. Guénolé, A., Srivas, R., Vreeken, K., Wang, Z.Z., Wang, S., Krogan, N.J., Ideker, T., and van Attikum, H. 2013. Dissection of DNA damage responses using multiconditional genetic interaction maps. Mol. Cell 49, 346–358.CrossRefGoogle Scholar
  28. Guo, Z., Deshpande, R., and Paull, T.T. 2010a. ATM activation in the presence of oxidative stress. Cell Cycle 9, 4805–4811.CrossRefGoogle Scholar
  29. Guo, Z., Kozlov, S., Lavin, M.F., Person, M.D., and Paull, T.T. 2010b. ATM activation by oxidative stress. Science 330, 517–521.CrossRefGoogle Scholar
  30. Guo, J., Liu, H., and Zheng, J. 2016. SynLethDB: Synthetic lethality database toward discovery of selective and sensitive anticancer drug targets. Nucleic Acids Res. 44(D1), D1011–1017.Google Scholar
  31. Hartwell, L.H., Szankasi, P., Roberts, C.J., Murray, A.W., and Friend, S.H. 1997. Integrating genetic approaches into the discovery of anticancer drugs. Science 278, 1064–1068.CrossRefGoogle Scholar
  32. Helleday, T., Petermann, E., Lundin, C., Hodgson, B., and Sharma, R.A. 2008. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 8, 193–204.CrossRefGoogle Scholar
  33. Huang, P., Feng, L., Oldham, E.A., Keating, M.J., and Plunkett, W. 2000. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407, 390–395.CrossRefGoogle Scholar
  34. Huang, M.E. and Kolodner, R.D. 2005. A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. Mol. Cell 17, 709–720.CrossRefGoogle Scholar
  35. Huang, M.E., Rio, A.G., Nicolas, A., and Kolodner, R.D. 2003. A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc. Natl. Acad. Sci. USA 100, 11529–11534.CrossRefGoogle Scholar
  36. Iraqui, I., Faye, G., Ragu, S., Masurel-Heneman, A., Kolodner, R.D., and Huang, M.E. 2008. Human peroxiredoxin PrxI is an orthologue of yeast Tsa1, capable of suppressing genome instability in Saccharomyces cerevisiae. Cancer Res. 68, 1055–1063.CrossRefGoogle Scholar
  37. Ito, K., Hirao, A., Arai, F., Matsuoka, S., Takubo, K., Hamaguchi, I., Nomiyama, K., Hosokawa, K., Sakurada, K., Nakagata, N., et al. 2004. Regulation of oxidative stress by ATM is required for selfrenewal of haematopoietic stem cells. Nature 431, 997–1002.CrossRefGoogle Scholar
  38. Kabir, M., Barradas, A., Tzotzos, G.T., Hentges, K.E., and Doig, A.J. 2017. Properties of genes essential for mouse development. PLoS One 12, e0178273.Google Scholar
  39. Karathia, H., Vilaprinyo, E., Sorribas, A., and Alves, R. 2011. Saccharomyces cerevisiae as a model organism: A comparative study. PLoS One 6, e16015.CrossRefGoogle Scholar
  40. Kaufman, B., Shapira-Frommer, R., Schmutzler, R.K., Audeh, M.W., Friedlander, M., Balmaña, J., Mitchell, G., Fried, G., Stemmer, S.M., Hubert, A., et al. 2015. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 33, 244–250.CrossRefGoogle Scholar
  41. Klaunig, J.E. and Kamendulis, L.M. 2004. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 44, 239–267.CrossRefGoogle Scholar
  42. Koppensteiner, R., Samartzis, E.P., Noske, A., von Teichman, A., Dedes, I., Gwerder, M., Imesch, P., Ikenberg, K., Moch, H., Fink, D., et al. 2014. Effect of MRE11 loss on PARP-inhibitor sensitivity in endometrial cancer in vitro. PLoS One 9, e100041.CrossRefGoogle Scholar
  43. Kryston, T.B., Georgiev, A.B., Pissis, P., and Georgakilas, A.G. 2011. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat. Res. 711, 193–201.CrossRefGoogle Scholar
  44. Lee, Y., Kim, K., Kang, K.T., Lee, J.S., Yang, S.S., and Chung, W.H. 2014. Atmospheric-pressure plasma jet induces DNA doublestrand breaks that require a Rad51-mediated homologous recombination for repair in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 560, 1–9.CrossRefGoogle Scholar
  45. Lengauer, C., Kinzler, K.W., and Vogelstein, B. 1998. Genetic instabilities in human cancers. Nature 396, 643–649.CrossRefGoogle Scholar
  46. Liu, Y., Burness, M.L., Martin-Trevino, R., Guy, J., Bai, S., Harouaka, R., Brooks, M.D., Shang, L., Fox, A., Luther, T.K., et al. 2017. RAD51 mediates resistance of cancer stem cells to PARP inhibition in triple-negative breast cancer. Clin. Cancer Res. 23, 514–522.CrossRefGoogle Scholar
  47. López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. 2013. The hallmarks of aging. Cell 153, 1194–1217.CrossRefGoogle Scholar
  48. Lord, C.J. and Ashworth, A. 2017. PARP inhibitors: Synthetic lethality in the clinic. Science 355, 1152–1158.CrossRefGoogle Scholar
  49. Marzano, C., Gandin, V., Folda, A., Scutari, G., Bindoli, A., and Rigobello, M.P. 2007. Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells. Free Radic. Biol. Med. 42, 872–881.CrossRefGoogle Scholar
  50. McAndrew, E.N., Lepage, C.C., and McManus, K.J. 2016. The synthetic lethal killing of RAD54B-deficient colorectal cancer cells by PARP1 inhibition is enhanced with SOD1 inhibition. Oncotarget 7, 87417–87430.CrossRefGoogle Scholar
  51. McLellan, J.L., O’Neil, N.J., Barrett, I., Ferree, E., van Pel, D.M., Ushey, K., Sipahimalani, P., Bryan, J., Rose, A.M., and Hieter, P. 2012. Synthetic lethality of cohesins with PARPs and replication fork mediators. PLoS Genet. 8, e1002574.CrossRefGoogle Scholar
  52. McManus, K.J., Barrett, I.J., Nouhi, Y., and Hieter, P. 2009. Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. Proc. Natl. Acad. Sci. USA 106, 3276–3281.CrossRefGoogle Scholar
  53. Mendes-Pereira, A.M., Martin, S.A., Brough, R., McCarthy, A., Taylor, J.R., Kim, J.S., Waldman, T., Lord, C.J., and Ashworth, A. 2009. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med. 1, 315–322.CrossRefGoogle Scholar
  54. Nijman, S.M. 2011. Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett. 585, 1–6.CrossRefGoogle Scholar
  55. O’Neil, N.J., Bailey, M.L., and Hieter, P. 2017. Synthetic lethality and cancer. Nat. Rev. Genet. 18, 613–623.CrossRefGoogle Scholar
  56. Orsburn, B., Escudero, B., Prakash, M., Gesheva, S., Liu, G., Huso, D.L., and Franco, S. 2010. Differential requirement for H2AX and 53BP1 in organismal development and genome maintenance in the absence of poly(ADP)ribosyl polymerase 1. Mol. Cell. Biol. 30, 2341–2352.CrossRefGoogle Scholar
  57. Pan, X., Ye, P., Yuan, D.S., Wang, X., Bader, J.S., and Boeke, J.D. 2006. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124, 1069–1081.CrossRefGoogle Scholar
  58. Pan, X., Yuan, D.S., Xiang, D., Wang, X., Sookhai-Mahadeo, S., Bader, J.S., Hieter, P., Spencer, F., and Boeke, J.D. 2004. A robust toolkit for functional profiling of the yeast genome. Mol. Cell 16, 487–496.CrossRefGoogle Scholar
  59. Ragu, S., Faye, G., Iraqui, I., Masurel-Heneman, A., Kolodner, R.D., and Huang, M.E. 2007. Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Proc. Natl. Acad. Sci. USA 104, 9747–9752.CrossRefGoogle Scholar
  60. Rancati, G., Moffat, J., Typas, A., and Pavelka, N. 2018. Emerging and evolving concepts in gene essentiality. Nat. Rev. Genet. 19, 34–49.CrossRefGoogle Scholar
  61. Rowe, L.A., Degtyareva, N., and Doetsch, P.W. 2008. DNA damageinduced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radic. Biol. Med. 45, 1167–1177.CrossRefGoogle Scholar
  62. Rowe, L.A., Degtyareva, N., and Doetsch, P.W. 2012. Yap1: A DNA damage responder in Saccharomyces cerevisiae. Mech. Ageing Dev. 133, 147–156.CrossRefGoogle Scholar
  63. Sajesh, B.V., Bailey, M., Lichtensztejn, Z., Hieter, P., and McManus, K.J. 2013. Synthetic lethal targeting of superoxide dismutase 1 selectively kills RAD54B-deficient colorectal cancer cells. Genetics 195, 757–767.CrossRefGoogle Scholar
  64. Sajesh, B.V. and McManus, K.J. 2015. Targeting SOD1 induces synthetic lethal killing in BLM-and CHEK2-deficient colorectal cancer cells. Oncotarget 6, 27907–27922.CrossRefGoogle Scholar
  65. Sobhakumari, A., Love-Homan, L., Fletcher, E.V., Martin, S.M., Parsons, A.D., Spitz, D.R., Knudson, C.M., and Simons, A.L. 2012. Susceptibility of human head and neck cancer cells to combined inhibition of glutathione and thioredoxin metabolism. PLoS One 7, e48175.CrossRefGoogle Scholar
  66. Srivas, R., Shen, J.P., Yang, C.C., Sun, S.M., Li, J., Gross, A.M., Jensen, J., Licon, K., Bojorquez-Gomez, A., Klepper, K., et al. 2016. A network of conserved synthetic lethal interactions for exploration of precision cancer therapy. Mol. Cell 63, 514–525.CrossRefGoogle Scholar
  67. Tarailo, M., Tarailo, S., and Rose, A.M. 2007. Synthetic lethal interactions identify phenotypic “nterologs” of the spindle assembly checkpoint components. Genetics 177, 2525–2530.CrossRefGoogle Scholar
  68. Tong, A.H., Evangelista, M., Parsons, A.B., Xu, H., Bader, G.D., Pagé, N., Robinson, M., Raghibizadeh, S., Hogue, C.W., Bussey, H., et al. 2001. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368.CrossRefGoogle Scholar
  69. Tong, A.H., Lesage, G., Bader, G.D., Ding, H., Xu, H., Xin, X., Young, J., Berriz, G.F., Brost, R.L., Chang, M., et al. 2004. Global mapping of the yeast genetic interaction network. Science 303, 808–813.CrossRefGoogle Scholar
  70. Tsang, C.K., Chen, M., Cheng, X., Qi, Y., Chen, Y., Das, I., Li, X., Vallat, B., Fu, L.W., Qian, C.N., et al. 2018. SOD1 phosphorylation by mTORC1 couples nutrient sensing and redox regulation. Mol. Cell 70, 502–515.CrossRefGoogle Scholar
  71. Tsang, C.K., Liu, Y., Thomas, J., Zhang, Y., and Zheng, X.F. 2014. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance. Nat. Commun. 5, 3446.CrossRefGoogle Scholar
  72. Turner, N.C., Lord, C.J., Iorns, E., Brough, R., Swift, S., Elliott, R., Rayter, S., Tutt, A.N., and Ashworth, A. 2008. A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J. 27, 1368–1377.CrossRefGoogle Scholar
  73. Watters, D., Kedar, P., Spring, K., Bjorkman, J., Chen, P., Gatei, M., Birrell, G., Garrone, B., Srinivasa, P., Crane, D.I., et al. 1999. Localization of a portion of extranuclear ATM to peroxisomes. J. Biol. Chem. 274, 34277–34282.CrossRefGoogle Scholar
  74. Wesoly, J., Agarwal, S., Sigurdsson, S., Bussen, W., Van Komen, S., Qin, J., van Steeg, H., van Benthem, J., Wassenaar, E., Baarends, W.M., et al. 2006. Differential contributions of mammalian Rad54 paralogs to recombination, DNA damage repair, and meiosis. Mol. Cell. Biol. 26, 976–989.CrossRefGoogle Scholar
  75. Wheeler, D.B., Bailey, S.N., Guertin, D.A., Carpenter, A.E., Higgins, C.O., and Sabatini, D.M. 2004. RNAi living-cell microarrays for loss-of-function screens in Drosophila melanogaster cells. Nat. Methods 1, 127–132.CrossRefGoogle Scholar
  76. White, J.K., Gerdin, A.K., Karp, N.A., Ryder, E., Buljan, M., Bussell, J.N., Salisbury, J., Clare, S., Ingham, N.J., Podrini, C., et al. 2013. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154, 452–464.CrossRefGoogle Scholar
  77. Winzeler, E.A., Shoemaker, D.D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J.D., Bussey, H., et al. 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.CrossRefGoogle Scholar
  78. Wong, S.L., Zhang, L.V., Tong, A.H., Li, Z., Goldberg, D.S., King, O.D., Lesage, G., Vidal, M., Andrews, B., Bussey, H., et al. 2004. Combining biological networks to predict genetic interactions. Proc. Natl. Acad. Sci. USA 101, 15682–15687.CrossRefGoogle Scholar
  79. Yan, S., Sorrell, M., and Berman, Z. 2014. Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress. Cell. Mol. Life Sci. 71, 3951–3967.CrossRefGoogle Scholar
  80. Yi, D.G., Kim, M.J., Choi, J.E., Lee, J., Jung, J., Huh, W.K., and Chung, W.H. 2016. Yap1 and Skn7 genetically interact with Rad51 in response to oxidative stress and DNA double-strand break in Saccharomyces cerevisiae. Free Radic. Biol. Med. 101, 424–433.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of PharmacyDuksung Women’s UniversitySeoulRepublic of Korea
  2. 2.Innovative Drug CenterDuksung Women’s UniversitySeoulRepublic of Korea

Personalised recommendations