Advertisement

Journal of Microbiology

, Volume 57, Issue 4, pp 232–237 | Cite as

Paraburkholderia lacunae sp. nov., isolated from soil near an artificial pond

  • Tingye Feng
  • Sang Eun Jeong
  • Jin Ju Lim
  • Seogang HyunEmail author
  • Che Ok JeonEmail author
Microbial Systematics and Evolutionary Microbiology
  • 103 Downloads

Abstract

A Gram-stain-negative, strictly aerobic bacterial strain, designated strain S27T, was isolated from soil near an artificial pond in South Korea. Cells were non-motile short rods showing oxidase- and catalase-positive activities. Growth of strain S27T was observed at 20–40°C (optimum, 30°C), pH 5.0–7.0 (optimum, pH 6.0), and 0–0.5% (w/v) NaCl (optimum, 0%). Ubiquinone-8 was detected as the sole respiratory quinone and the major fatty acids were C16:0, cyclo-C17:0, and cyclo-C19:0ω8c. The G + C content of the genomic DNA was 62.4 mol%. Phosphatidylglycerol, phosphatidylethanolamine, and an unidentified aminophospholipid were detected as the major polar lipids. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S27T formed a clearly distinct phyletic lineage from closely related Paraburkholderia species within the genus Paraburkholderia. Strain S27T was most closely related to Paraburkholderia rhynchosiae WSM3937T, Paraburkholderia ginsengiterrae DCY85T, Paraburkholderia fungorum NBRC 102489T, and Paraburkholderia graminis C4D1MT with 98.8%, 98.4%, 98.4%, and 97.7% 16S rRNA gene sequence similarities, respectively. The DNA-DNA relatedness level between strain S27T and the type strain of P. rhynchosiae was 36.8 ± 2.6%. On the basis of phenotypic, chemotaxonomic and molecular properties, strain S27T represents a novel species of the genus Paraburkholderia, for which the name Paraburkholderia lacunae sp. nov. is proposed. The type strain is S27T (KACC 19714 T = JCM 32721T).

Keywords

Paraburkholderia lacunae taxonomy new taxa soil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8463_MOESM1_ESM.pdf (242 kb)
Supplementary material, approximately 242 KB.

References

  1. Bournaud, C., Moulin, L., Cnockaert, M., Faria, S., Prin, Y., Severac, D., and Vandamme, P. 2017. Paraburkholderia piptadeniae sp. nov. and Paraburkholderia ribeironis sp. nov., two root-nodulating symbiotic species of Piptadenia gonoacantha in Brazil. Int. J. Syst. Evol. Microbiol. 67, 432–440.CrossRefGoogle Scholar
  2. Chang, H.W., Nam, Y.D., Jung, M.Y., Kim, K.H., Roh, S.W., Kim, M.S., Jeong, C.O., Yoon, J., and Bae, J. 2008. Statistical superiority of genome-probing microarrays as genomic DNA-DNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. J. Microbiol. Methods 75, 523–530.CrossRefGoogle Scholar
  3. Choi, G.M. and Im, W.T. 2018. Paraburkholderia azotifigens sp. nov., a nitrogen-fixing bacterium isolated from paddy soil. Int. J. Syst. Evol. Microbiol. 68, 310–316.CrossRefGoogle Scholar
  4. Choi, J., Lee, D., Jang, J.H., Cha, S., and Seo, T. 2018. Aestuariibaculum marinum sp. nov., a marine bacterium isolated from seawater in South Korea. J. Microbiol. 56, 614–618.CrossRefGoogle Scholar
  5. Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D.R., da Costa, M.S., Rooney, P.R., Yi, H., Xu, X., Meyer, S.D., et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68, 461–466.CrossRefGoogle Scholar
  6. Coenye, T., Laevens, S., Willems, A., Ohlén, M., Hannant, W., Govan, J.R., Gillis, M., Falsen, E., and Vandamme, P. 2001. Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int. J. Syst. Evol. Microbiol. 51, 1099–1107.CrossRefGoogle Scholar
  7. De Meyer, S.E., Cnockaert, M., Ardley, J.K., Trengove, R.D., Garau, G., Howieson, J.G., and Vandamme, P. 2013. Burkholderia rhynchosiae sp. nov., isolated from Rhynchosia ferulifolia root nodules. Int. J. Syst. Evol. Microbiol. 63, 3944–3949.CrossRefGoogle Scholar
  8. De Meyer, S.E., Cnockaert, M., Moulin, L., Howieson, J.G., and Vandamme, P. 2018. Symbiotic and non-symbiotic Paraburkholderia isolated from South African Lebeckia ambigua root nodules and the description of Paraburkholderia fynbosensis sp. nov. Int. J. Syst. Evol. Microbiol. 68, 2607–2614.CrossRefGoogle Scholar
  9. Dobritsa, A.P., Linardopoulou, E.V., and Samadpour, M. 2017. Transfer of 13 species of the genus Burkholderia to the genus Caballeronia and reclassification of Burkholderia jirisanensis as Paraburkholderia jirisanensis comb. nov. Int. J. Syst. Evol. Microbiol. 67, 3846–3853.CrossRefGoogle Scholar
  10. Dobritsa, A.P. and Samadpour, M. 2016. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int. J. Syst. Evol. Microbiol. 66, 2836–2846.CrossRefGoogle Scholar
  11. Farh, M.E.A., Kim, Y.J., Van An, H., Sukweenadhi, J., Singh, P., Huq, M.A., and Yang, D.C. 2015. Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov., antagonistic bacteria against root rot pathogen Cylindrocarpon destructans, isolated from ginseng soil. Arch. Microbiol. 197, 439–447.CrossRefGoogle Scholar
  12. Gao, Z., Yuan, Y., Xu, L., Liu, R., Chen, M., and Zhang, C. 2016. Paraburkholderia caffeinilytica sp. nov., isolated from the soil of a tea plantation. Int. J. Syst. Evol. Microbiol. 66, 4185–4190.CrossRefGoogle Scholar
  13. Gao, Z.H., Zhong, S.F., Lu, Z.E., Xiao, S.Y., and Qiu, L.H. 2018. Paraburkholderia caseinilytica sp. nov., isolated from the pine and broad-leaf mixed forest soil. Int. J. Syst. Evol. Microbiol. 68, 1963–1968.CrossRefGoogle Scholar
  14. Gomori, G. 1955. Preparation of buffers for use in enzyme studies. Methods Enzymol. 1, 138–146.CrossRefGoogle Scholar
  15. Kim, J.M., Le, N.T., Chung, B.S., Park, J.H., Bae, J.W., Madsen, E.L., and Jeon, C.O. 2008. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl. Environ. Microbiol. 74, 7313–7320.CrossRefGoogle Scholar
  16. Kim, M., Oh, H.S., Park, S.C., and Chun, J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64, 346–351.CrossRefGoogle Scholar
  17. Komagata, K. and Suzuki, K. 1987. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19, 161–208.CrossRefGoogle Scholar
  18. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.CrossRefGoogle Scholar
  19. Lányi, B. 1987. Classical and rapid identification methods for medically important bacteria. Methods Microbiol. 19, 1–67.Google Scholar
  20. Lee, Y. and Jeon, C.O. 2018. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil. Int. J. Syst. Evol. Microbiol. 68, 1251–1257.CrossRefGoogle Scholar
  21. Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Lu, Y., et al. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18.CrossRefGoogle Scholar
  22. Minnikin, D.E., Patel, P.V., Alshamaony, L., and Goodfellow, M. 1977. Polar lipid composition in the classification of Nocardia and related bacteria. Int. J. Syst. Bacteriol. 27, 104–117.CrossRefGoogle Scholar
  23. Nawrocki, E.P. and Eddy, S.R. 2007. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput. Biol. 3, e56.Google Scholar
  24. Oh, S.Y. and Lim, Y.W. 2018. Root-associated bacteria influencing mycelial growth of Tricholoma matsutake (pine mushroom). J. Microbiol. 56, 399–407.CrossRefGoogle Scholar
  25. Sambrook, J. and Russell, D.W. 2001. Molecular cloning: a laboratory manual 3rd edition. Coldspring-Harbour Laboratory Press, UK.Google Scholar
  26. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc., Newark, DE, USA.Google Scholar
  27. Sawana, A., Adeolu, M., and Gupta, R.S. 2014. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front. Genet. 5, 429.CrossRefGoogle Scholar
  28. Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characterization, pp. 607–654. In Gerhardt, P. (ed.), Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, USA.Google Scholar
  29. Stackebrandt, E. and Ebers, J. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today 33, 152–155.Google Scholar
  30. Viallard, V., Poirier, I., Cournoyer, B., Haurat, J., Wiebkin, S., Ophel-Keller, K., and Balandreau, J. 1998. Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and [Pseudomonas] glathei as Burkholderia. Int. J. Syst. Evol. Microbiol. 48, 549–563.Google Scholar
  31. Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T., and Arakawa, M. 1992. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes, 1981) comb. nov. Microbiol. Immunol. 36, 1251–1275.CrossRefGoogle Scholar
  32. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  1. 1.Department of Life ScienceChung-Ang UniversitySeoulRepublic of Korea

Personalised recommendations