Genomic surveillance links livestock production with the emergence and spread of multi-drug resistant non-typhoidal Salmonella in Mexico
- 16 Downloads
Abstract
Multi-drug resistant (MDR) non-typhoidal Salmonella (NTS) is increasingly common worldwide. While food animals are thought to contribute to the growing antimicrobial resistance (AMR) problem, limited data is documenting this relationship, especially in low and middle-income countries (LMIC). Herein, we aimed to assess the role of non-clinical NTS of bovine origin as reservoirs of AMR genes of human clinical significance. We evaluated the phenotypic and genotypic AMR profiles in a set of 44 bovine-associated NTS. For comparative purposes, we also included genotypic AMR data of additional isolates from Mexico (n = 1,067) that are publicly available. The most frequent AMR phenotypes in our isolates involved tetracycline (40/44), trimethoprim-sulfamethoxazole (26/44), chloramphenicol (19/44), ampicillin (18/44), streptomycin (16/44), and carbenicillin (13/44), while nearly 70% of the strains were MDR. These phenotypes were correlated with a widespread distribution of AMR genes (i.e. tetA, aadA, dfrA12, dfrA17, sul1, sul2, bla-TEM-1, blaCARB-2) against multiple antibiotic classes, with some of them contributed by plasmids and/or class-1 integrons. We observed different AMR genotypes for betalactams and tetracycline resistance, providing evidence of convergent evolution and adaptive AMR. The probability of MDR genotype occurrence was higher in meat-associated isolates than in those from other sources (odds ratio 11.2, 95% confidence interval 4.5–27.9, P < 0.0001). The study shows that beef cattle are a significant source of MDR NTS in Mexico, highlighting the role of animal production on the emergence and spread of MDR Salmonella in LMIC.
Keywords
antimicrobial resistance Salmonella genomics beef productionPreview
Unable to display preview. Download preview PDF.
Supplementary material
References
- An, R., Alshalchi, S., Breimhurst, P., Munoz-Aguayo, J., Flores-Figueroa, C., and Vidovic, S. 2017. Strong influence of livestock environments on the emergence and dissemination of distinct multidrug-resistant phenotypes among the population of non-typhoidal Salmonella. PLoS One 12, e0179005.CrossRefGoogle Scholar
- Antunes, P., Machado, J., and Peixe, L. 2006. Characterization of antimicrobial resistance and class 1 and 2 integrons in Salmonella enterica isolates from different sources in Portugal. J. Antimicrob. Chemother. 58, 297–304.CrossRefGoogle Scholar
- Baron, S., Hadjadj, L., Rolain, J.M., and Olaitan, A.O. 2016. Molecular mechanisms of polymyxin resistance: Knowns and unknowns. Int. J. Antimicrob. Agents 48, 583–591.CrossRefGoogle Scholar
- Bauer, A.W., Kirby, W.M., Sherris, J.C., and Turck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496.CrossRefGoogle Scholar
- Brichta-Harhay, D.M., Arthur, T.M., Bosilevac, J.M., Kalchayanand, N., Shackelford, S.D., Wheeler, T.L., and Koohmaraie, M. 2011. Diversity of multidrug-resistant Salmonella enterica strains associated with cattle at harvest in the United States. Appl. Environ. Microbiol. 77, 1783–1796.CrossRefGoogle Scholar
- Carattoli, A., Zankari, E., García-Fernández, A., Larsen, M.V., Lund, O., Villa, L., Aarestrup, F.M., and Hasman, H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903.CrossRefGoogle Scholar
- Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552.CrossRefGoogle Scholar
- Chang, H.H., Cohen, T., Grad, Y.H., Hanage, W.P., O’Brien, T.F., and Lipsitch, M. 2015. Origin and proliferation of multiple-drug resistance in bacterial pathogens. Microbiol. Mol. Biol. Rev. 79, 101–116.CrossRefGoogle Scholar
- CLSI. 2012. Clinical and laboratory standards institute. Performance standards for antimicrobial disk susceptibility tests; Approved standard-Eleventh edition. CLSI document M02-A11. CLSI, Wayne, PA, USA.Google Scholar
- Delgado-Suárez, E.J., Selem-Mojica, N., Ortiz-Lopez, R., Gebreyes, W.A., Allard, M.W., Barona-Gomez, F., and Rubio-Lozano, M.S. 2018. Whole genome sequencing reveals widespread distribution of typhoidal toxin genes and VirB/D4 plasmids in bovineassociated nontyphoidal Salmonella. Sci. Rep. 8, 9864.CrossRefGoogle Scholar
- Dhanani, A.S., Block, G., Dewar, K., Forgetta, V., Topp, E., Beiko, R.G., and Diarra, M.S. 2015. Genomic comparison of non-typhoidal Salmonella enterica serovars Typhimurium, Enteritidis, Heidelberg, Hadar and Kentucky isolates from broiler chickens. PLoS One 10, e0128773.CrossRefGoogle Scholar
- Edgar, R. and Bibi, E. 1997. MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. J. Bacteriol. 179, 2274–2280.CrossRefGoogle Scholar
- Gouy, M., Guindon, S., and Gascuel, O. 2010. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224.CrossRefGoogle Scholar
- Hoffmann, S., Batz, M.B., and Morris, J.G.Jr. 2012. Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens. J. Food Prot. 75, 1292–1302.CrossRefGoogle Scholar
- Jia, B., Raphenya, A.R., Alcock, B., Waglechner, N., Guo, P., Tsang, K.K., Lago, B.A., Dave, B.M., Pereira, S., Sharma, A.N., et al. 2017. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D566–D573.CrossRefGoogle Scholar
- Junod, T., López-Martín, J., and Gädicke, P. 2013. Antimicrobial susceptibility of animal and food isolates of Salmonella enterica. Rev. Med. Chile 141, 298–304.CrossRefGoogle Scholar
- Kalambhe, D.G., Zade, N.N., Chaudhari, S.P., Shinde, S.V., Khan, W., and Patil, A.R. 2016. Isolation, antibiogram and pathogenicity of Salmonella spp. recovered from slaughtered food animals in Nagpur region of Central India. Vet. World 9, 176–181.CrossRefGoogle Scholar
- Karczmarczyk, M., Martins, M., McCusker, M., Mattar, S., Amaral, L., Leonard, N., Aarestrup, F.M., and Fanning, S. 2010. Characterization of antimicrobial resistance in Salmonella enterica food and animal isolates from Colombia: identification of a qnrB19- mediated quinolone resistance marker in two novel serovars. FEMS Microbiol. Lett. 313, 10–19.CrossRefGoogle Scholar
- Lin, D., Chen, K., Wai-Chi Chan, E., and Chen, S. 2015. Increasing prevalence of ciprofloxacin-resistant food-borne Salmonella strains harboring multiple PMQR elements but not target gene mutations. Sci. Rep. 5, 14754.CrossRefGoogle Scholar
- Lujan, S.A., Guogas, L.M., Ragonese, H., Matson, S.W., and Redinbo, M.R. 2007. Disrupting antibiotic resistance propagation by inhibiting the conjugative DNA relaxase. Proc. Natl. Acad. Sci. USA 104, 12282–12287.CrossRefGoogle Scholar
- McEwen, S.A. and Fedorka-Cray, P.J. 2002. Antimicrobial use and resistance in animals. Clin. Infect. Dis. 34 (Suppl 3), S93–S106.CrossRefGoogle Scholar
- Meng, H., Zhang, Z., Chen, M., Su, Y., Li, L., Miyoshi, S., Yan, H., and Shi, L. 2011. Characterization and horizontal transfer of class 1 integrons in Salmonella strains isolated from food products of animal origin. Int. J. Food Microbiol. 149, 274–277.CrossRefGoogle Scholar
- Mir, R.A., Weppelmann, T.A., Johnson, J.A., Archer, D., Morris, J.G.Jr., and Jeong, K.C. 2016. Identification and characterization of cefotaxime resistant bacteria in beef cattle. PLoS One 11, e0163279.CrossRefGoogle Scholar
- OECD. 2016. Antimicrobial resistance. Policy insights. Available online: https://www.oecd.org/health/health-systems/AMR-Policy-Insights-November2016.pdf (accessed on 5 October 2018).
- Perez-Montaño, J.A., González-Aguilar, D., Barba, J., Pacheco-Gallardo, C., Campos-Bravo, C.A., García, S., Heredia, N.L., and Cabrera-Díaz, E. 2012. Frequency and antimicrobial resistance of Salmonella serotypes on beef carcasses at small abattoirs in Jalisco State, Mexico. J. Food Prot. 75, 867–873.CrossRefGoogle Scholar
- Poole, K. 2012. Bacterial stress responses as determinants of antimicrobial resistance. J. Antimicrob. Chemother. 67, 2069–2089.CrossRefGoogle Scholar
- Qiu, H., Gong, J., Butaye, P., Lu, G., Huang, K., Zhu, G., Zhang, J., Hathcock, T., Cheng, D., and Wang, C. 2018. CRISPR/Cas9/ sgRNA-mediated targeted gene modification confirms the causeeffect relationship between gyrA mutation and quinolone resistance in Escherichia coli. FEMS Microbiol. Lett. 365, fny127.CrossRefGoogle Scholar
- Quesada, A., Porrero, M.C., Tellez, S., Palomo, G., Garcia, M., and Dominguez, L. 2015. Polymorphism of genes encoding PmrAB in colistin-resistant strains of Escherichia coli and Salmonella enterica isolated from poultry and swine. J. Antimicrob. Chemother. 70, 71–74.CrossRefGoogle Scholar
- Quesada, A., Reginatto, G.A., Ruiz Español, A., Colantonio, L.D., and Burrone, M.S. 2016. Antimicrobial resistance of Salmonella spp. isolated animal food for human consumption. Rev. Perú. Med. Exp. Salud Pública 33, 32.CrossRefGoogle Scholar
- Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A., and Huelsenbeck, J.P. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542.CrossRefGoogle Scholar
- SAGARPA. 2018. Productos químico-farmacéuticos vigentes 2017. Available online: https://www.gob.mx/senasica/acciones-y-programas/regulacion-de-productos-veterinarios (accessed on 5 October 2018).
- Schmidt, J.W., Agga, G.E., Bosilevac, J.M., Brichta-Harhay, D.M., Shackelford, S.D., Wang, R., Wheeler, T.L., and Arthur, T.M. 2015. Occurrence of antimicrobial-resistant Escherichia coli and Salmonella enterica in the beef cattle production and processing continuum. Appl. Environ. Microbiol. 81, 713–725.CrossRefGoogle Scholar
- Sibhat, B., Molla Zewde, B., Zerihun, A., Muckle, A., Cole, L., Boerlin, P., Wilkie, E., Perets, A., Mistry, K., and Gebreyes, W.A. 2011. Salmonella serovars and antimicrobial resistance profiles in beef cattle, slaughterhouse personnel and slaughterhouse environment in Ethiopia. Zoonoses Public Health 58, 102–109.CrossRefGoogle Scholar
- Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol. Syst. Biol. 7, 539.CrossRefGoogle Scholar
- Strahilevitz, J., Jacoby, G.A., Hooper, D.C., and Robicsek, A. 2009. Plasmid-mediated quinolone resistance: A multifaceted threat. Clin. Microbiol. Rev. 22, 664–689.CrossRefGoogle Scholar
- Swick, M.C., Morgan-Linnell, S.K., Carlson, K.M., and Zechiedrich, L. 2011. Expression of multidrug efflux pump genes acrAB-tolC, mdfA, and norE in Escherichia coli clinical isolates as a function of fluoroquinolone and multidrug resistance. Antimicrob. Agents Chemother. 55, 921–924.CrossRefGoogle Scholar
- Talbot, E.A., Gagnon, E.R., and Greenblatt, J. 2006. Common ground for the control of multidrug-resistant Salmonella in ground beef. Clin. Infect. Dis. 42, 1455–1462.CrossRefGoogle Scholar
- Van, T.T., Nguyen, H.N., Smooker, P.M., and Coloe, P.J. 2012. The antibiotic resistance characteristics of non-typhoidal Salmonella enterica isolated from food-producing animals, retail meat and humans in South East Asia. Int. J. Food Microbiol. 154, 98–106.CrossRefGoogle Scholar
- Varela-Guerrero, J.A., Talavera-Rojas, M., Gutierrez-Castillo Adel, C., Reyes-Rodriguez, N.E., and Vazquez-Guadarrama, J. 2013. Phenotypic-genotypic resistance in Salmonella spp. isolated from cattle carcasses from the north central zone of the State of Mexico. Trop. Anim. Health Prod. 45, 995–1000.CrossRefGoogle Scholar
- WHO. 2015. WHO estimates of the global burden of foodborne diseases. Foodborne disease burden epidemiology reference group 2007–2015. Available online: http://www.who.int/foodsafety/areas_work/foodborne-diseases/ferg/en/ (accessed on 5 October 2018).
- WHO. 2017. WHO list of critically important antimicrobials for human medicine 5th revision. Available online: http://who.int/foodsafety/publications/antimicrobials-fifth/en/ (accessed on 5 October 2018).
- Williams, J.J. and Hergenrother, P.J. 2008. Exposing plasmids as the Achilles’ heel of drug-resistant bacteria. Curr. Opin. Chem. Biol. 12, 389–399.CrossRefGoogle Scholar
- Zankari, E., Allesoe, R., Joensen, K.G., Cavaco, L.M., Lund, O., and Aarestrup, F.M. 2017. PointFinder: a novel web tool for WGSbased detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J. Antimicrob. Chemother. 72, 2764–2768.CrossRefGoogle Scholar
- Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., Aarestrup, F.M., and Larsen, M.V. 2012. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644.CrossRefGoogle Scholar
- Zhang, S., Yin, Y., Jones, M.B., Zhang, Z., Deatherage Kaiser, B.L., Dinsmore, B.A., Fitzgerald, C., Fields, P.I., and Deng, X. 2015. Salmonella serotype determination utilizing high-throughput genome sequencing data. J. Clin. Microbiol. 53, 1685–1692.CrossRefGoogle Scholar