Advertisement

Journal of Microbiology

, Volume 57, Issue 2, pp 101–106 | Cite as

Blue-Red LED wavelength shifting strategy for enhancing beta-carotene production from halotolerant microalga, Dunaliella salina

  • Sang-Il Han
  • Sok Kim
  • Changsu Lee
  • Yoon-E ChoiEmail author
Microbial Systematics and Evolutionary Microbiology
  • 37 Downloads

Abstract

In the present study, to improve the photosynthetic betacarotene productivity of Dunaliella salina, a blue-red LED wavelength-shifting system (B-R system) was investigated. Dunaliella salina under the B-R system showed enhanced density and beta-carotene productivity compared to D. salina cultivated under single light-emitting diode light wavelengths (blue, white, and red light-emitting diode). Additionally, we developed blue light-adapted D. salina (ALE-D. salina) using an adaptive laboratory evolution (ALE) approach. In combination with the B-R system applied to ALE-D. salina (ALE B-R system), the beta-carotene concentration (33.94 ± 0.52 μM) was enhanced by 19.7% compared to that observed for the non-ALE-treated wild-type of D. salina (intact D. salina) under the B-R system (28.34 ± 0.24 μM).

Keywords

Dunaliella salina beta-carotene light-emitting diode wavelength shift adaptive laboratory evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Amotz, A. 1996. Effect of low temperature on the stereoisomer composition of β-carotene in the halotolerant alga Dunaliella bardawil (Chlorophyta). J. Phycol. 32, 272–275.CrossRefGoogle Scholar
  2. Borowitzka, M.A., Borowitzka, L.J., and Kessly, D. 1990. Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. J. Appl. Phycol. 2, 111–119.CrossRefGoogle Scholar
  3. Chappelle, E.W., Kim, M.S., and McMurtrey, J.E. 1992. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sens. Environ. 39, 239–247.CrossRefGoogle Scholar
  4. Darvin, M.E., Fluhr, J.W., Meinke, M.C., Zastrow, L., Sterry, W., and Lademann, J. 2011. Topical beta-carotene protects against infrared-light–induced free radicals. Exp. Dermatol. 20, 125–129.CrossRefGoogle Scholar
  5. Dragosits, M. and Mattanovich, D. 2013. Adaptive laboratory evolution–principles and applications for biotechnology. Microb. Cell Fact. 12, 64.CrossRefGoogle Scholar
  6. Eijckelhoff, C. and Dekker, J.P. 1997. A routine method to determine the chlorophyll a, pheophytin a and β-carotene contents of isolated photosystem II reaction center complexes. Photosyn. Res. 52, 69–73.CrossRefGoogle Scholar
  7. Fu, W., Gudmundsson, O., Feist, A.M., Herjolfsson, G., Brynjolfsson, S., and Palsson, B.Ø. 2012. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diodebased photobioreactor. J. Biotechnol. 161, 242–249.CrossRefGoogle Scholar
  8. Fu, W., Guðmundsson, Ó., Paglia, G., Herjólfsson, G., Andrésson, Ó.S., Palsson, B.Ø., and Brynjólfsson, S. 2013. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl. Microbiol. Biotechnol. 97, 2395–2403.CrossRefGoogle Scholar
  9. Guenther, J.E., Nemson, J.A., and Melis, A. 1988. Photosystem stoichiometry and chlorophyll antenna size in Dunaliella salina (green algae). Biochim. Biophys. Acta 934, 108–117.CrossRefGoogle Scholar
  10. Guillard, R.R. 1975. Culture of phytoplankton for feeding marine invertebrates, pp. 29–60. In Culture of marine invertebrate animals. Springer.CrossRefGoogle Scholar
  11. Guillard, R.R. and Ryther, J.H. 1962. Studies of marine planktonic diatoms: I. Cycletella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 8, 229–239.CrossRefGoogle Scholar
  12. Helena, S., Zainuri, M., and Suprijanto, J. 2016. Microalgae Dunaliella salina (Teodoresco, 1905) growth using the LED light (light limiting dioda) and different media. Aquatic Procedia 7, 226–230.CrossRefGoogle Scholar
  13. Koc, C., Anderson, G.A., and Kommareddy, A. 2013. Use of red and blue light-emitting diodes (LED) and fluorescent lamps to grow microalgae in a photobioreactor. Isr. J. Aquac. 65, 1–8.Google Scholar
  14. Kró, M., Maxwell, D.P., and Huner, N.P. 1997. Exposure of Dunaliella salina to low temperature mimics the high light-induced accumulation of carotenoids and the carotenoid binding protein (Cbr). Plant Cell Physiol. 38, 213–216.CrossRefGoogle Scholar
  15. Lamers, P.P., Janssen, M., De Vos, R.C., Bino, R.J., and Wijffels, R.H. 2012. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J. Biotechnol. 162, 21–27.CrossRefGoogle Scholar
  16. Lamers, P.P., van de Laak, C.C., Kaasenbrood, P.S., Lorier, J., Janssen, M., De Vos, R.C., Bino, R.J., and Wijffels, R.H. 2010. Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol. Bioeng. 106, 638–648.CrossRefGoogle Scholar
  17. Mata, T.M., Martins, A.A., and Caetano, N.S. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sust. Energ. Rev. 14, 217–232.CrossRefGoogle Scholar
  18. Priyadarshani, I. and Rath, B. 2012. Commercial and industrial applications of micro algae–A review. J. Algal Biomass Utin. 3, 89–100.Google Scholar
  19. Reyes, L.H., Gomez, J.M., and Kao, K.C. 2014. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng. 21, 26–33.CrossRefGoogle Scholar
  20. Ribeiro, B.D., Barreto, D.W., and Coelho, M.A.Z. 2011. Technological aspects of β-carotene production. Food Bioprocess Tech. 4, 693–701.CrossRefGoogle Scholar
  21. Sayre, R. 2010. Microalgae: the potential for carbon capture. Bioscience 60, 722–727.CrossRefGoogle Scholar
  22. Shaish, A., Avron, M., Pick, U., and Ben-Amotz, A. 1993. Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil? Planta 190, 363–368.CrossRefGoogle Scholar
  23. Takaichi, S. 2011. Carotenoids in algae: distributions, biosyntheses and functions. Mar. Drugs 9, 1101–1118.CrossRefGoogle Scholar
  24. Tang, H., Abunasser, N., Garcia, M., Chen, M., Ng, K.S., and Salley, S.O. 2011. Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl. Energy 88, 3324–3330.CrossRefGoogle Scholar
  25. Vílchez, C., Forján, E., Cuaresma, M., Bédmar, F., Garbayo, I., and Vega, J.M. 2011. Marine carotenoids: biological functions and commercial applications. Mar. Drugs 9, 319–333.CrossRefGoogle Scholar
  26. Von Lintig, J., Hessel, S., Isken, A., Kiefer, C., Lampert, J.M., Voolstra, O., and Vogt, K. 2005. Towards a better understanding of carotenoid metabolism in animals. Biochim. Biophys. Acta 1740, 122–131.CrossRefGoogle Scholar
  27. Xi, T., Kim, D.G., Roh, S.W., Choi, J.S., and Choi, Y.E. 2016. Enhancement of astaxanthin production using Haematococcus pluvialis with novel LED wavelength shift strategy. Appl. Microbiol. Biotechnol. 100, 6231–6238.CrossRefGoogle Scholar
  28. Zhao, Y.J., Hui, Z., Chao, X., Nie, E., Li, H.J., He, J., and Zheng, Z. 2011. Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater. Ecol. Eng. 37, 1546–1554.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • Sang-Il Han
    • 1
  • Sok Kim
    • 1
  • Changsu Lee
    • 2
  • Yoon-E Choi
    • 1
    Email author
  1. 1.Division of Environmental Science and Ecological EngineeringKorea UniversitySeoulRepublic of Korea
  2. 2.Microbiology and Functionality Research GroupWorld Institute of KimchiGwangjuRepublic of Korea

Personalised recommendations