Advertisement

Journal of Microbiology

, Volume 57, Issue 1, pp 23–29 | Cite as

Gramella fulva sp. nov., isolated from a dry surface of tidal flat

  • Sae Hyun Hwang
  • Woon Mo Hwang
  • Keunsoo Kang
  • Tae-Young AhnEmail author
Microbial Systematics and Evolutionary Microbiology
  • 120 Downloads

Abstract

A novel Gram-stain-negative, aerobic, motile by means of gliding, and short rod-shaped bacterium, designated strain SH35T, was isolated from the dry surface of a tidal flat in Hwasung-si, South Korea. Growth occurred at 10–40°C (optimum 30°C), at pH 6.0–8.0 (optimum pH 7.0), in 1–12% NaCl (optimum 2%), and was inhibited in the absence of NaCl and Ca2+ ions. Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain SH35T belonged to the genus Gramella and was a member of the family Flavobacteriaceae with highest sequence similarity to Gramella flava JLT2011T (96.1%), followed by Gramella oceani CCAMSZ-TT (95.6%), and 93.0–94.9% to other recognized Gramella species. The major cellular fatty acids (> 5% of the total) of strain SH35T were iso-C15:0, Iso-C16:0, anteiso-C15:0, iso-C17:0 3-OH and summed feature 9 (C16:0 10-methyl and/or C17:1 iso ω9с). The major polar lipids were phosphatidylethanolamine, two unidentified aminolipids and nine unidentified polar lipids. The major respiratory quinone and the predominant polyamine were menaquinone-6 (MK-6) and symhomospermidine, respectively. The DNA G + C content was 40.5 mol% (39.7% based on total genome calculations). Based on phylogenetic analysis and physiological and biochemical characterization, strain SH35T represents a novel species of the genus Gramella, for which the name Gramella fulva sp. nov. is proposed. The type strain is SH35T (= KACC 19447T = JCM 32369T).

Keywords

Gramella fulva sp. nov. Gramella dry surface of tidal flat whole genome sequencing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8370_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 1251 KB.

References

  1. Barrow, G.I. and Feltham, R.K. 1993. Cowan and steel’s manual for the identification of medical bacteria, 3rd ed. Cambridge university press, London, UK.CrossRefGoogle Scholar
  2. Bernardet, J.F., Nakagawa, Y., and Holmes, B. 2002. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int. J. Syst. Evol. Microbiol. 52, 1049–1070.Google Scholar
  3. Busse, H.J. and Auling, G. 1988. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst. Appl. Microbiol. 11, 1–8.CrossRefGoogle Scholar
  4. Cho, S.H., Chae, S.H., Cho, M., Kim, T.U., Choi, S., Han, J.H., Kim, Y.T., Joung, Y., Joh, K., Nedashkovskaya, O.I., and Kim, S.B. 2011. Gramella gaetbulicola sp. nov., a member of the family Flavobacteriaceae isolated from foreshore soil. Int. J. Syst. Evol. Microbiol. 61, 2654–2658.CrossRefGoogle Scholar
  5. Collins, M.D. 1994. Isoprenoid quinones, pp. 345–401. In Goodfellow, M. and O’donnell, A.G. (eds.), Chemical methods in prokaryotic systematics, John Wiley & Sons, Chichester, UK.Google Scholar
  6. Collins, M.D., Pirouz, T., Goodfellow, M., and Minnikin, D.E. 1977. Distribution of menaquinones in Actinomycetes and Corynebacteria. J. Gen. Microbiol. 100, 221–230.CrossRefGoogle Scholar
  7. Fautz, E. and Reichenbach, H. 1980. A simple test for flexirubintype pigments. FEMS Microbiol. Lett. 8, 87–91.CrossRefGoogle Scholar
  8. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17, 368–376.CrossRefGoogle Scholar
  9. Hameed, A., Shahina, M., Lin, S.Y., Liu, Y.C., Lai, W.A., and Young, C.C. 2014. Gramella oceani sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 64, 2675–2681.CrossRefGoogle Scholar
  10. Jeong, S.H., Jin, H.M., and Jeon, C.O. 2013. Gramella aestuarii sp. nov., isolated from a tidal flat, and emended description of Gramella echinicola. Int. J. Syst. Evol. Microbiol. 63, 2872–2878.CrossRefGoogle Scholar
  11. Joung, Y., Kim, H., Jang, T., Ahn, T.S., and Joh, K. 2011. Gramella jeungdoensis sp. nov., isolated from a solar saltern in Korea. J. Microbiol. 49, 1022–1026.CrossRefGoogle Scholar
  12. Kaas, R.S., Leekitcharoenphon, P., Aarestrup, F.M., and Lund, O. 2014. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One 9, e104984.CrossRefGoogle Scholar
  13. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.CrossRefGoogle Scholar
  14. Komagata, K. and Suzuki, K. 1987. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19, 161–206.CrossRefGoogle Scholar
  15. Lane, D.J. 1991. 16S/23S rRNA sequencing, pp. 115–175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics. John Wiley & Sons, New York, USA.Google Scholar
  16. Lau, S.C., Tsoi, M.M., Li, X., Plakhotnikova, I., Dobretsov, S., Wong, P.K., and Qian, P.Y. 2005. Gramella portivictoriae sp. nov., a novel member of the family Flavobacteriaceae isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 55, 2497–2500.CrossRefGoogle Scholar
  17. Leifson, E. 1963. Determination of carbohydrate metabolism of marine bacteria. J. Bacteriol. 85, 1183–1184.Google Scholar
  18. Li, A.Z., Han, X.B., Lin, L.Z., Zhang, M.X., and Zhu, H.H. 2018. Gramella antarctica sp. nov., isolated from marine surface sediment. Int. J. Syst. Evol. Microbiol. 68, 358–363.CrossRefGoogle Scholar
  19. Liu, K., Li, S., Jiao, N., and Tang, K. 2014. Gramella flava sp. nov., a member of the family Flavobacteriaceae isolated from seawater. Int. J. Syst. Evol. Microbiol. 64, 165–168.CrossRefGoogle Scholar
  20. McCammon, S.A., Innes, B.H., Bowman, J.P., Franzmann, P.D., Dobson, S.J., Holloway, P.E., Skerratt, J.H., Nichols, P.D., and Rankin, L.M. 1998. Flavobacterium hibernum sp. nov., a lactoseutilizing bacterium from a freshwater antarctic lake. Int. J. Syst. Bacteriol. 48, 1405–1412.CrossRefGoogle Scholar
  21. Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.P., and Goker, M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14, 60.CrossRefGoogle Scholar
  22. Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.CrossRefGoogle Scholar
  23. Nedashkovskaya, O.I., Kim, S.B., and Bae, K.S. 2010. Gramella marina sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int. J. Syst. Evol. Microbiol. 60, 2799–2802.CrossRefGoogle Scholar
  24. Nedashkovskaya, O.I., Kim, S.B., Lysenko, A.M., Frolova, G.M., Mikhailov, V.V., Bae, K.S., Lee, D.H., and Kim, I.S. 2005. Gramella echinicola gen. nov., sp. nov., a novel halophilic bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius. Int. J. Syst. Evol. Microbiol. 55, 391–394.CrossRefGoogle Scholar
  25. Nishijima, M., Takadera, T., Imamura, N., Kasai, H., An, K.D., Adachi, K., Nagao, T., Sano, H., and Yamasato, K. 2009. Microbulbifer variabilis sp. nov. and Microbulbifer epialgicus sp. nov., isolated from pacific marine algae, possess a rod-coccus cell cycle in association with the growth phase. Int. J. Syst. Evol. Microbiol. 59, 1696–1707.CrossRefGoogle Scholar
  26. Panschin, I., Becher, M., Verbarg, S., Sproer, C., Rohde, M., Schuler, M., Amann, R.I., Harder, J., Tindall, B.J., and Hahnke, R.L. 2017. Description of Gramella forsetii sp. nov., a marine Flavobacteriaceae isolated from north sea water, and emended description of Gramella gaetbulicola Cho et al.2011. Int.J. Syst. Evol. Microbiol. 67, 697–703.CrossRefGoogle Scholar
  27. Park, S., Kim, S., Jung, Y.T., and Yoon, J.H. 2015a. Gramella aquimixticola sp. nov., isolated from water of an estuary environment. Int. J. Syst. Evol. Microbiol. 65, 4244–4249.CrossRefGoogle Scholar
  28. Park, J.M., Park, S., Won, S.M., Jung, Y.T., Shin, K.S., and Yoon, J.H. 2015b. Gramella aestuariivivens sp. nov., isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 65, 1262–1267.CrossRefGoogle Scholar
  29. Park, S., Yoon, S.Y., Jung, Y.T., Won, S.M., and Yoon, J.H. 2016. Gramella sediminilitoris sp. nov., isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 66, 2704–2710.CrossRefGoogle Scholar
  30. Peterson, W.J., Bell, T.A., Etchells, J.L., and Smart, W.W.G.J. 1954. A procedure for demonstrating the presence of carotenoid pigments in yeast. J. Bacteriol. 67, 708–713.Google Scholar
  31. Pruesse, E., Peplies, J., and Glockner, F.O. 2012. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829.CrossRefGoogle Scholar
  32. Reichenbach, H. 1989. Order I. Cytophagales leadbetter 1974, pp. 2011–2013. In Staley, J.T., Bryant, M.P., Pfennig, N., and Holt, J.G. (eds.), Bergey’s manual of systematic bacteriology, vol. 3. Williams & Wilkins, Baltimore, USA.Google Scholar
  33. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.Google Scholar
  34. Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids, midi technical note 101. Midi inc, Newark, DE, USA.Google Scholar
  35. Shahina, M., Hameed, A., Lin, S.Y., Lee, R.J., Lee, M.R., and Young, C.C. 2014. Gramella planctonica sp. nov., a zeaxanthin-producing bacterium isolated from surface seawater, and emended descriptions of Gramella aestuarii and Gramella echinicola. Antonie van Leeuwenhoek 105, 771–779.CrossRefGoogle Scholar
  36. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.CrossRefGoogle Scholar
  37. Tindall, B.J. 2005. Respiratory lipoquinones as biomarkers. In Akkermans, A., De bruijn, F., and Van elsas, D. (eds.), Molecular microbial ecology manual, section 4.1.5, supplement 1, 2nd edn. Kluwer Publishers, Dordrecht, The Netherlands.Google Scholar
  38. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.CrossRefGoogle Scholar
  39. Yoon, J., Jo, Y., Kim, G.J., and Choi, H. 2015. Gramella lutea sp. nov., a novel species of the family Flavobacteriaceae isolated from marine sediment. Curr. Microbiol. 71, 252–258.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • Sae Hyun Hwang
    • 1
  • Woon Mo Hwang
    • 2
  • Keunsoo Kang
    • 2
  • Tae-Young Ahn
    • 2
    Email author
  1. 1.Department of Biology, College of Natural SciencesKyonggi UniversitySuwonRepublic of Korea
  2. 2.Department of Microbiology, College of Natural SciencesDankook UniversityCheonanRepublic of Korea

Personalised recommendations