Advertisement

Journal of Microbiology

, Volume 57, Issue 4, pp 243–251 | Cite as

Growth of cyanobacterial soil crusts during diurnal freeze-thaw cycles

  • Steven K. SchmidtEmail author
  • Lara Vimercati
Microbial Ecology and Environmental Microbiology

Abstract

Various Nostoc spp. and related cyanobacteria are able to survive extreme temperatures and are among the most successful colonists of high-elevation sites being exposed due to glacial retreat. It is unclear, however, if cyanobacteria can grow during the extreme freeze-thaw cycles that occur on a year-round basis at high-elevation, peri-glacial sites or if they only grow during the rare periods when freeze-thaw cycles do not occur. We conducted several experiments to determine if cyanobacteria that form biological soil crusts (BSCs) at high-elevation sites (> 5,000 m.a.s.l.) in the Andes can grow during diurnal freeze-thaw cycles on a par with those that occur in the field. Here we show that a soil crust that had been frozen at -20°C for five years was able to increase from 40% to 100% soil coverage during a 45-day incubation during which the soil temperature cycled between -12°C and 26°C every day. In a second, experiment an undeveloped soil with no visible BSCs showed a statistically significant shift in the bacterial community from one containing few cyanobacterial sequences (8% of sequences) to one dominated (27%) by Nostoc, Microcoleus, and Leptolyngbya phylotypes during a 77-day incubation with daily freeze-thaw cycles. In addition, counts of spherical Nostoc-like colonies increased significantly on the soil surface during the experiment, especially in microcosms receiving phosphorus. Taken together these results show that freeze-thaw cycles alone do not limit the growth of BSCs in high-elevation soils, and provide new insight into how life is able to thrive in one of the most extreme terrestrial environments on Earth.

Keywords

biological soil crusts Nostoc commune terraforming Mars extremophiles glacier retreat soil stabilization BSCs astrobiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8359_MOESM1_ESM.pdf (167 kb)
Supplementary data Fig. S1. Soil water content measured gravimetrically during experiments 1 and 2

References

  1. Bahl, J., Lau, M.C.Y., Smith, G.J.D., Vijaykrishna, D., Cary, S.C., Lacap, D.C., Lee, C.K., Papke, R.T., Warren-Rhodes, K.A., Wong, F.K.Y., et al. 2011. Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat. Commun. 2, 163.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Belnap, J., Büdel, B., and Lange, O.L. 2001. Biological soil crusts: characteristics and distribution, pp. 3–30. In Biological soil crusts: structure, function, and management. Springer, Berlin, Germany.CrossRefGoogle Scholar
  3. Bowker, M.A. 2007. Biological soil crust rehabilitation in theory and practice: an underexploited opportunity. Restor. Ecol. 15, 13–23.CrossRefGoogle Scholar
  4. Boyd, W.L. and Boyd, J.W. 1962. Viability of thermophiles and coliform bacteria in arctic soils and water. Can. J. Microbiol. 8, 189–192.CrossRefPubMedGoogle Scholar
  5. Cameron, R.E. 1962. Species of Nostoc vaucher occurring in the Sonoran Desert in Arizona. Trans. Am. Microsc. Soc. 81, 379–384.CrossRefGoogle Scholar
  6. Cameron, R.E. and Devaney, J.R. 1970. Antarctic soil algal crusts: scanning electron and optical microscope study. Trans. Am. Microsc. Soc. 89, 264–273.CrossRefGoogle Scholar
  7. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cuatrecasas, J. 1968. Paramo vegetation and its life forms: geoecology of the mountainous regions of the tropical Americas. Coll. Geogr. 9, 163–186.Google Scholar
  9. Darcy, J.L. and Schmidt, S.K. 2016. Nutrient limitation of microbial phototrophs on a debris-covered glacier. Soil Biol. Biochem. 95, 156–163.CrossRefGoogle Scholar
  10. Darcy, J.L., Schmidt, S.K., Knelman, J.E., Cleveland, C.C., Castle, S.C., and Nemergut, D.R. 2018. Phosphorus, not nitrogen, limits plants and microbial primary producers following glacial retreat. Sci. Adv. 4, eaaq0942.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dodds, W.K., Gudder, D.A., and Mollenhauer, D. 1995. The ecology of Nostoc. J. Phycol. 31, 2–18.CrossRefGoogle Scholar
  12. Etemadi-Khah, A., Pourbabaee, A.A., Alikhani, H.A., Noroozi, M., and Bruno, L. 2017. Biodiversity of isolated cyanobacteria from desert soils in Iran. Geomicrobiol. J. 34, 784–794.CrossRefGoogle Scholar
  13. Feng, Y.N., Zhang, Z.C., Feng, J.L., and Qiu, B.S. 2012. Effects of UV-B radiation and periodic desiccation on the morphogenesis of the edible terrestrial cyanobacterium Nostoc flagelliforme. Appl. Environ. Microbiol. 78, 7075–7081.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fleming, E.D. and Castenholz, R.W. 2007. Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environ. Microbiol. 9, 1448–1455.CrossRefPubMedGoogle Scholar
  15. Gao, K.S. and Ye, C.P. 2003. Culture of the terrestrial cyanobacterium Nostoc flagelliforme (Cyanophyceae) under aquatic conditions. J. Phycol. 39, 617–623.CrossRefGoogle Scholar
  16. Garcia-Pichel, F. and Pringault, O. 2001a. Cyanobacteria track water in desert soils. Nature 413, 380–381.CrossRefPubMedGoogle Scholar
  17. Garcia-Pichel, F., López-Cortés, A., and Nübel, U. 2001b. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl. Environ. Microbiol. 67, 1902–1910.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Harding, T., Jungblut, A.D., Lovejoy, C., and Vincent, W.F. 2011. Microbes in high arctic snow and implications for the cold biosphere. Appl. Environ. Microbiol. 77, 3234–3243.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hedberg, I. and Hedberg, O. 1979. Tropical-alpine life-forms of vascular plants. Oikos 33, 297–307.CrossRefGoogle Scholar
  20. Knelman, J.E., Legg, T.M., O’Neill, S.P., González, A., Cleveland, C.C., and Nemergut, D.R. 2012. Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol. Biochem. 46, 172–180.CrossRefGoogle Scholar
  21. Knelman, J.E., Schmidt, S.K., Darcy, J.L., Castle, S.C., and Nemergut, D.R. 2014. Nutrient addition dramatically accelerates microbial community succession. PLoS One 9, e102609.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lipman, C.B. 1941. The successful revival of Nostoc commune from a herbarium specimen eighty-seven years old. Bull. Torrey Bot. Club 68, 664–666.CrossRefGoogle Scholar
  23. Liu, R., Li, K., Zhang, H., Zhu, J., and Joshi, D. 2014. Spatial distribution of microbial communities associated with dune landform in the Gurbantunggut Desert, China. J. Microbiol. 52, 898–907.CrossRefPubMedGoogle Scholar
  24. Mager, D.M. and Thomas, A.D. 2011. Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J. Arid Environ. 75, 91–97.CrossRefGoogle Scholar
  25. Miller, S.R. and Castenholz, R.W. 2000. Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus. Appl. Environ. Microbiol. 66, 4222–4229.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Nemergut, D.R., Anderson, S.P., Cleveland, C.C., Martin, A.P., Miller, A.E., Seimon, A., and Schmidt, S.K. 2007. Microbial community succession in unvegetated, recently-deglaciated soil. Microb. Ecol. 53, 110–122.CrossRefPubMedGoogle Scholar
  27. Nemergut, D.R., Schmidt, S.K., Fukami, T., O’Neill, S.P., Bilinski, T.M., Stanish, L.F., Knelman, J.E., Darcy, J.L., Lynch, R.C., and Wickey, P. 2013. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Oksanen, J., Blanchet, F.G., and Kindt, R. 2013. Package ‘vegan’. Community Ecology Package, Version 2.Google Scholar
  29. Park, J.I., Grant, C.M., Attfield, P.V., and Dawes, I.W. 1997. The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAScyclic AMP signal transduction pathway. Appl. Environ. Microbiol. 63, 3818–3824.PubMedPubMedCentralGoogle Scholar
  30. Potts, M. 2001. Desiccation tolerance: a simple process? Trends Microbiol. 9, 553–559.CrossRefPubMedGoogle Scholar
  31. Price, M.N., Dehal, P.S., and Arkin, A.P. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Rabatel, A., Francou, B., Soruco, A., Gomez, J., Cáceres, B., Ceballos, J.L., Basantes, R., Vuille, M., Sicart, J.E., Huggel, C., et al. 2013. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere 7, 81–102.CrossRefGoogle Scholar
  33. Sakamoto, T., Yoshida, T., Arima, H., Hatanaka, Y., Takani, Y., and Tamaru, Y. 2009. Accumulation of trehalose in response to desiccation and salt stress in the terrestrial cyanobacterium Nostoc commune. Phycological Res. 57, 66–73.CrossRefGoogle Scholar
  34. Sand-Jensen, K. 2014. Ecophysiology of gelatinous Nostoc colonies: unprecedented slow growth and survival in resource-poor and harsh environments. Ann. Bot. 114, 17–33.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sand-Jensen, K. and Jespersen, T.S. 2012. Tolerance of the widespread cyanobacterium Nostoc commune to extreme temperature variations (-269 to 105°C), pH and salt stress. Oecologia 169, 331–339.CrossRefPubMedGoogle Scholar
  36. Sattin, S.R., Cleveland, C.C., Hood, E., Reed, S.C., King, A.J., Schmidt, S.K., Robeson, M.S., and Nemergut, D.R. 2009. Functional shifts in unvegetated, perhumid, recently deglaciated soils do not correlate with shifts in soil bacterial community composition. J. Microbiol. 47, 673–681.CrossRefPubMedGoogle Scholar
  37. Schmidt, S.K., Lynch, R., King, A.J., Karki, D., Robeson, M.S., Nagy, L., Williams, M.W., Mitter, M.S., and Freeman, K.R. 2011a. Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctica. Proc. Roy. Soc. B 278, 702–708.CrossRefGoogle Scholar
  38. Schmidt, S.K., Cleveland, C.C., Nemergut, D.R., Reed S.C., King, A.J., and Sowell, P. 2011b. Estimating phosphorus availability for microbial growth in an emerging landscape. Geoderma 163, 135–140.CrossRefGoogle Scholar
  39. Schmidt, S.K., Darcy, J.L., Sommers, P., Gunawan, E., Knelman, J.E., and Jager, K. 2017a. Freeze–thaw revival of rotifers and algae in a desiccated, high-elevation (5500 meters) microbial mat, high Andes, Perú. Extremophiles 21, 573–580.CrossRefPubMedGoogle Scholar
  40. Schmidt, S.K., Nemergut, D.R., Todd, B.T., Darcy, J.L., Cleveland, C.C., and King, A.J. 2012. A simple method for determining limiting nutrients for photosynthetic crusts. Plant Ecol. Div. 5, 513–519.CrossRefGoogle Scholar
  41. Schmidt, S.K., Nemergut, D.R., Miller, A.E., Freeman, K.R., King, A.J., and Seimon, A. 2009. Microbial activity and diversity during extreme freeze-thaw cycles in periglacial soils, 5400 m elevation, Cordillera Vilcanota, Perú. Extremophiles 13, 807–816.CrossRefPubMedGoogle Scholar
  42. Schmidt, S.K., Reed, S.C., Nemergut, D.R., Grandy, A.S., Cleveland, C.C., Weintraub, M.N., Hill, A.W., Costello, E.K., Meyer, A.F., Neff, J.C., et al. 2008. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc. Roy. Soc. B 275, 2793–2802.CrossRefGoogle Scholar
  43. Schmidt, S.K., Vimercati, L., Darcy, J.L., Arán, P., Gendron, E.M.S., Solon, A.J., Porazinska, D., and Dorador, C. 2017b. A Naganishia in high places: functioning populations or dormant cells from the atmosphere? Mycology 8, 153–163.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Seiderer, T., Venter, A., van Wyk, F., Levanets, A., and Jordaan, A. 2017. Growth of soil algae and cyanobacteria on gold mine tailings material. S. African J. Sci. 113, 1–6.Google Scholar
  45. Shtarkman, Y.M., Kocer, Z.A., Edgar, R., Veerapaneni, R.S., D’Elia, T., Morris, P.F., and Rogers, S.O. 2013. Subglacial Lake Vostok (Antarctica) accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting Bacteria and Eukarya. PLoS One 8, E67221.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sklenár, P., Kucerová, A., Macková, J., and Romoleroux, K. 2016. Temperature microclimates of plants in a tropical alpine environment: how much does growth form matter? Arct. Antarct. Alp. Res. 48, 61–78.CrossRefGoogle Scholar
  47. Stres, B., Philippot, L., Faganeli, J., and Tiedje, J.M. 2010. Frequent freeze-thaw cycles yield diminished yet resistant and responsive microbial communities in two temperate soils: a laboratory experiment. FEMS Microbiol. Ecol. 74, 323–335.CrossRefPubMedGoogle Scholar
  48. Tamaru, Y., Takani, Y., Yoshida, T., and Sakamoto, T. 2005. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 71, 7327–7333.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Tang, E.P.Y., Tremblay, R., and Vincent, W.F. 1997. Cyanobacterial dominance of polar freshwater ecosystems: are high latitude mat-formers adapted to low temperatures? J. Phycol. 33, 171–181.CrossRefGoogle Scholar
  50. Taton, A., Grubisic, S., Ertz, D., Hodgson, D.A., Picardi, R., Biondi, N., Tredici, M., Mainini, M., Losi, D., Marinelli, F., et al. 2006. Polyphasic study of Antarctic cyanobacterial strains. J. Phycol. 42, 1257–1270.CrossRefGoogle Scholar
  51. Thangaraj, B., Rajasekar, D.P., Vijayaraghavan, R., Garlapati, D., Devanesan, A.A., Lakshmanan, U., and Dharmar, P. 2017. Cytomorphological and nitrogen metabolic enzyme analysis of psychrophilic and mesophilic Nostoc sp.: a comparative outlook. 3 Biotech 7, 107.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Thompson, L.G., Mosley-Thompson, E., Davis, M.E., and Brecher, H.H. 2011. Tropical glaciers, recorders and indicators of climate change, are disappearing globally. Ann. Glaciol. 52, 23–34.CrossRefGoogle Scholar
  53. Vimercati, L., Hamsher, S., Schubert, Z., and Schmidt, S.K. 2016. Growth of a high-elevation Cryptococcus sp. during extreme freezethaw cycles. Extremophiles 20, 579–588.CrossRefPubMedGoogle Scholar
  54. Wang, W., Wang, Y., Shu, X., and Zhang, Q. 2013. Physiological responses of soil crust-forming cyanobacteria to diurnal temperature variation. J. Basic Microbiol. 53, 72–80.CrossRefPubMedGoogle Scholar
  55. Zimmer, A., Meneses, R.I., Rabatel, A., Soruco, A., Dangles, O., and Anthelme, F. 2018. Time lag between glacial retreat and upward migration alters tropical alpine communities. Persp. Plant Ecol. Evol. Systematics 30, 89–102.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations