Advertisement

Journal of Microbiology

, Volume 57, Issue 1, pp 1–8 | Cite as

Exopolymeric substances (EPS) from Salmonella enterica: polymers, proteins and their interactions with plants and abiotic surfaces

  • Rugare Maruzani
  • Gabriel Sutton
  • Paola Nocerino
  • Massimiliano MarvasiEmail author
Minireview
  • 57 Downloads

Abstract

When Salmonella enterica is not in a planktonic state, it persists in organised communities encased in extracellular polymeric substances (EPS), defined as biofilms. Environmental conditions ultimately dictate the key properties of the biofilms such as porosity, density, water content, charge, sorption and ion exchange properties, hydrophobicity and mechanical stability. S. enterica has been extensively studied due to its ability to infect the gastrointestinal environment. However, only during the last decades studies on its persistence and replication in soil, plant and abiotic surfaces have been proposed. S. enterica is an environmental bacterium able to effectively persist outside the human host. It does so by using EPS as tools to cope with environmental fluctuations. We therefore address this mini-review to classify those EPS that are produced by Salmonella with focus on the environment (plant, soil, and abiotic surfaces) by using a classification of EPS proposed by Flemming and collaborators in 2007. The EPS are therefore classified as structural, sorptive, surface-active, active, and informative.

Keywords

Salmonella enterica extracellular polymeric substances (EPS) microbe-plant interaction biofilm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, I., Rouf, S., Sun, L., Cimdins, A., Shafeeq, S., Le Guyon, S., Schottkowski, M., Rhen, M., and Römling, U. 2016. BcsZ inhibits biofilm phenotypes and promotes virulence by blocking cellulose production in Salmonella enterica serovar Typhimurium. Microb. Cell Fact. 15, 1–15.CrossRefGoogle Scholar
  2. Amarasinghe, J.J., D’Hondt, R.E., Waters, C.M., and Mantis, N.J. 2013. Exposure of Salmonella enterica serovar Typhimurium to a protective monoclonal IgA triggers exopolysaccharide production via a diguanylate cyclase-dependent pathway. Infect. Immun. 81, 653–664.CrossRefGoogle Scholar
  3. Austin, J.W., Sanders, G., Kay, W.W., and Collinson, S.K. 1998. Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol. Lett. 162, 295–301.CrossRefGoogle Scholar
  4. Barak, J.D., Jahn, C.E., Gibson, D.L., and Charkowski, A.O. 2007. The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica. Mol. Plant Microbe Interact. 20, 1083–1091.CrossRefGoogle Scholar
  5. Barnhart, M.M. and Chapman, M.R. 2006. Curli biogenesis and function. Annu. Rev. Microbiol. 1, 131.CrossRefGoogle Scholar
  6. Brandl, M.T., Carter, M.Q., Parker, C.T., Chapman, M.R., Huynh, S., and Zhou, Y. 2011. Salmonella biofilm formation on Aspergillus niger involves cellulose--chitin interactions. PLoS One 6, e25553.CrossRefGoogle Scholar
  7. Brenner, F.W., Villar, R.G., Angulo, F.J., Tauxe, R., and Swaminathan, B. 2000. Salmonella nomenclature. J. Clin. Microbiol. 38, 2465–2467.Google Scholar
  8. Callahan, M.T., Micallef, S.A., and Buchanan, R.L. 2017. Soil type, soil moisture, and field slope influence the horizontal movement of Salmonella enterica and Citrobacter freundii from floodwater through soil. J. Food Prot. 80, 189–197.CrossRefGoogle Scholar
  9. Castelijn, G.A.A., van der Veen, S., Zwietering, M.H., Moezelaar, R., and Abee, T. 2012. Diversity in biofilm formation and production of curli fimbriae and cellulose of Salmonella Typhimurium strains of different origin in high and low nutrient medium. Biofouling 28, 51–63.CrossRefGoogle Scholar
  10. Choong, F.X., Back, M., Fahlen, S., Johansson, L.B.G., Melican, K., Rhen, M., Nilsson, K.P.R., and Richter-Dahlfors, A. 2016. Realtime optotracing of curli and cellulose in live Salmonella biofilms using luminescent oligothiophenes. NPJ Biofilms Microbiomes 2, 16024.CrossRefGoogle Scholar
  11. Cowles, K.N., Willis, D.K., Engel, T.N., Jones, J.B., and Barak, J.D. 2015. Diguanylate cyclases AdrA and STM1987 regulate Salmonella enterica exopolysaccharide production during plant colonization in an environment-dependent manner. Appl. Environ. Microbiol. 82, 1237–1248.CrossRefGoogle Scholar
  12. de Moraes, M.H., Desai, P., Porwollik, S., Canals, R., Perez, D.R., Chu, W., McClelland, M., and Teplitski, M. 2017. Salmonella persistence in tomatoes requires a distinct set of metabolic functions identified by transposon insertion sequencing. Appl. Environ. Microbiol. 83, 1–18.CrossRefGoogle Scholar
  13. Díaz De Rienzo, M.A., Banat, I.M., Dolman, B., Winterburn, J., and Martin, P.J. 2015. Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent. New Biotechnol. 32, 720–726.CrossRefGoogle Scholar
  14. Erickson, K.D. and Detweiler, C.S. 2006. The Rcs phosphorelay system is specific to enteric pathogens/commensals and activates ydeI, a gene important for persistent Salmonella infection of mice. Mol. Microbiol. 62, 883–894.CrossRefGoogle Scholar
  15. Flemming, H.C., Neu, T.R., and Wozniak, D.J. 2007. The EPS matrix: the “house of biofilm cells”. J. Bacteriol. 189, 7945–7947.CrossRefGoogle Scholar
  16. Gibson, D.L., White, A.P., Snyder, S.D., Martin, S., Heiss, C., Azadi, P., Surette, M., and Kay, W.W. 2006. Salmonella produces an O-antigen capsule regulated by AgfD and important for environmental persistence. J. Bacteriol. 188, 7722–7730.CrossRefGoogle Scholar
  17. Gong, A.S., Bolster, C.H., Benavides, M., and Walker, S.L. 2009. Extraction and analysis of extracellular polymeric substances: Comparison of methods and extracellular polymeric substance levels in Salmonella pullorum SA 1685. Environ. Eng. Sci. 26, 1523–1532.CrossRefGoogle Scholar
  18. Gottesman, S., Trisler, P., and Torres-Cabassa, A. 1985. Regulation of capsular polysaccharide synthesis in Escherichia coli K-12: Characterization of three regulatory genes. J. Bacteriol. 162, 1111–1119.Google Scholar
  19. Gu, G., Hu, J., Cevallos-Cevallos, J.M., Richardson, S.M., Bartz, J.A., and van Bruggen, A.H. 2011. Internal colonization of Salmonella enterica serovar Typhimurium in tomato plants. PLoS One 6, e27340.CrossRefGoogle Scholar
  20. Hassan, A.N. and Frank, J.F. 2003. Influence of surfactant hydrophobicity on the detachment of Escherichia coli O157:H7 from lettuce. Int. J. Food Microbiol. 87, 145–152.CrossRefGoogle Scholar
  21. Jonas, K., Tomenius, H., Kader, A., Normark, S., Römling U., Belova L.M., and Melefors, A. 2007. Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy. BMC Microbiol. 7, 70.CrossRefGoogle Scholar
  22. Jones, K. and Bradshaw, S.B. 1996. Biofilm formation by the Enterobacteriaceae: A comparison between Salmonella enteritidis, Escherichia coli and a nitrogen fixing strain of Klebsiella pneumoniae. J. Appl. Bacteriol. 80, 458–464.CrossRefGoogle Scholar
  23. Keelara, S., Thakur, S., and Patel, J. 2016. Biofilm formation by environmental isolates of Salmonella and their sensitivity to natural antimicrobials. Foodborne Pathog. Dis. 13, 509–516.CrossRefGoogle Scholar
  24. Lapidot, A., Romlingm, U., and Yaron, S. 2006. Biofilm formation and the survival of Salmonella Typhimurium on parsley. Int. J. Food Microbiol. 109, 229–233.CrossRefGoogle Scholar
  25. Lapidot, A. and Yaron, S. 2009. Transfer of Salmonella enterica serovar Typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. J. Food Prot. 72, 618–623.CrossRefGoogle Scholar
  26. Latasa, C., Garcia, B., Echeverz, M., Toledo-Arana, A., Valle, J., Campoy, S., Garcia-del Portillo, F., Solano, C., and Lasa, I. 2012. Salmonella biofilm development depends on the phosphorylation status of RcsB. J. Bacteriol. 194, 3708–3722.CrossRefGoogle Scholar
  27. Ledeboer, N.A. and Jones, B.D. 2005. Exopolysaccharide sugars contribute to biofilm formation by Salmonella enterica serovar Typhimurium on HEp-2 cells and chicken intestinal epithelium. J. Bacteriol. 187, 3214–3226.CrossRefGoogle Scholar
  28. Li, A., Pi, S., Wei, W., Chen, T., Yang, J., and Ma, F. 2016. Adsorption behavior of tetracycline by extracellular polymeric substrates extracted from Klebsiella sp. J1. Environ. Sci. Pollut. Res. Int. 23, 25084–25092.CrossRefGoogle Scholar
  29. Liu, B., Knirel, Y.A., Feng, L., Perepelov, A.V., Senchenkova, S.N., Reeves, P.R., and Wang, L. 2014. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol. Rev. 38, 56–89.CrossRefGoogle Scholar
  30. Liu, J., Yu, S., Han, B., and Chen, J. 2017. Effects of benzalkonium chloride and ethanol on dual-species biofilms of Serratia liquefaciens S1 and Shewanella putrefaciens S4. Food Control. 78, 196–202.CrossRefGoogle Scholar
  31. Marvasi, M., Cox, C.E., Xu, Y., Noel, J.T., Giovannoni, J.J., and Teplitski, M. 2013. Differential regulation of Salmonella Typhimurium genes involved in O-antigen capsule production and their role in persistence within tomatoes. Mol. Plant Microbe Interact. 26, 793–800.CrossRefGoogle Scholar
  32. Marvasi, M., de Moraes, M.H., Salas-Gonzalez, I., Porwollik, S., Farias, M., McClelland, M., and Teplitski, M. 2016. Involvement of the Rcs regulon in the persistence of Salmonella Typhimurium in tomatoes. Environ. Microbiol. Rep. 8, 928–935.CrossRefGoogle Scholar
  33. Marvasi, M., Visscher, P.T., and Casillas Martinez, L. 2010. Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis. FEMS Microbiol. Lett. 313, 1–9.CrossRefGoogle Scholar
  34. Mireles II, J.R., Toguchi, A., and Harshey, R.M. 2001. Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: Surfactin inhibits biofilm formation. J. Bacteriol. 183, 5848–5854.CrossRefGoogle Scholar
  35. Morikawa, M., Kagihiro, S., Haruki, M., Takano, K., Branda, S., Kolter, R., and Kanaya, S. 2006. Biofilm formation by a Bacillus subtilis strain that produces gamma-polyglutamate. Microbiology 152, 2801–2807.CrossRefGoogle Scholar
  36. Oh, Y.J., Hubauer-Brenner, M., Gruber, H.J., Cui, Y., Traxler, L., Siligan, C., Park, S., and Hinterdorfer, P. 2016. Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds. Sci. Rep. 6, 1–8.CrossRefGoogle Scholar
  37. Paytubi, S., Cansado, C., Madrid, C., and Balsalobre, C. 2017. Nutrient composition promotes switching between pellicle and bottom biofilm in Salmonella. Front Microbiol. 8, 2160.CrossRefGoogle Scholar
  38. Prouty, A.M. and Gunn, J.S. 2003. Comparative analysis of Salmonella enterica serovar Typhimurium biofilm formation on gallstones and on glass. Infect. Immun. 71, 7154–7158.CrossRefGoogle Scholar
  39. Reichhardt, C., McCrate, O.A., Zhou, X., Lee, J., Thongsomboon, W., and Cegelski, L. 2016. Influence of the amyloid dye Congo red on curli, cellulose, and the extracellular matrix in E. coli during growth and matrix purification. Annal. Bioanal. Chem. 408, 7709–7717.CrossRefGoogle Scholar
  40. Romaní, A.M., Fund, K., Artigas, J., Schwartz, T., Sabater, S., and Obst, U. 2008. Relevance of polymeric matrix enzymes during biofilm formation. Microb. Ecol. 56, 427–436.CrossRefGoogle Scholar
  41. Römling, U., Bian, Z., Hammar, M., Sierralta, W.D., and Normark, S. 1998. Curli fibers are highly conserved between Salmonella Typhimurium and Escherichia coli with respect to operon structure and regulation. J. Bacteriol. 180, 722–731.Google Scholar
  42. Römling, U. and Galperin, M.Y. 2015. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol. 23, 545–557.CrossRefGoogle Scholar
  43. Römling, U. and Lünsdorf, H. 2004. Characterization of cellulose produced by Salmonella enterica serovar Typhimurium. Cellulose 11, 413–418.CrossRefGoogle Scholar
  44. Rossi, E.M., Beilke, L., Kochhann, M., Sarzi, D.H., and Tondo, E.C. 2016. Biosurfactant produced by Salmonella Enteritidis SE86 can increase adherence and resistance to sanitizers on lettuce leaves (Lactuca sativa L., cichoraceae). Front. Microbiol. 7, 1–9.Google Scholar
  45. Serra, D.O., Richter, A.M., and Hengge, R. 2013. Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J. Bacteriol. 195, 5540–5554.CrossRefGoogle Scholar
  46. Snyder, D.S., Gibson, D., Heiss, C., Kay, W., and Azadi, P. 2006. Structure of a capsular polysaccharide isolated from Salmonella enteritidis. Carbohydr. Res. 341, 2388–2397.CrossRefGoogle Scholar
  47. Solano, C., Garcia, B., Valle, J., Berasain, C., Ghigo, J.M., Gamazo, C., and Lasa, I. 2002. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol. Microbiol. 43, 793–808.CrossRefGoogle Scholar
  48. Steenackers, H., Hermans, K., Vanderleyden, J., and De Keersmaecker, S.C.J. 2012. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res. Int. 45, 502–531.CrossRefGoogle Scholar
  49. Sutherland, I. 2001. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147, 3–9.CrossRefGoogle Scholar
  50. Tan, S.Y.E., Chew, S.C., Tan, S.Y.Y., Givskov, M., and Yang, L. 2014. Emerging frontiers in detection and control of bacterial biofilms. Curr. Opin. Biotechnol. 26, 1–6.CrossRefGoogle Scholar
  51. Totani, T., Nishiuchi, Y., Tateishi, Y., Yoshida, Y., Kitanaka, H., Niki, M., Kaneko, Y., and Matsumoto, S. 2017. Effects of nutritional and ambient oxygen condition on biofilm formation in Mycobacterium avium subsp. hominissuis via altered glycolipid expression. Sci. Rep. 7, 41775.CrossRefGoogle Scholar
  52. Van Gerven, N., Goyal, P., Vandenbussche, G., De Kerpel, M., Jonckheere, W., De Greve, H., and Remaut, H. 2014. Secretion and functional display of fusion proteins through the curli biogenesis pathway. Mol. Microbiol. 91, 1022–1035.CrossRefGoogle Scholar
  53. Van Gerven, N., Klein, R.D., Hultgren, S.J., and Remaut, H. 2015. Bacterial amyloid formation: structural insights into curli biogensis. Trends Microbiol. 23, 693–706.CrossRefGoogle Scholar
  54. Wagner, C. and Hensel, M. 2011. Adhesive mechanisms of Salmonella enterica. Adv. Exp. Med. Biol. 715, 17–34.CrossRefGoogle Scholar
  55. Wang, H., Dong, Y., Wang, G., Xu, X., and Zhou, G. 2016. Effect of growth media on gene expression levels in Salmonella Typhimurium biofilm formed on stainless steel surface. Food Cont. 59, 546–552.CrossRefGoogle Scholar
  56. Wang, H., Huang, Y., Wu, S.Y., Li, Y.Y., Ye, Y., Zheng, Y.J., and Huang, R. 2014. Extracellular DNA inhibits Salmonella enterica serovar Typhimurium and S. enterica serovar Typhi biofilm development on abiotic surfaces. Curr. Microbiol. 68, 262–268.CrossRefGoogle Scholar
  57. Wang, S., Shi, H., Li, Y., Shi, Z., Zhang, X., Baek, C., Mothershead, T., and Curtiss, R. 2013. A colanic acid operon deletion mutation enhances induction of early antibody responses by live attenuated Salmonella vaccine strains. Infect. Immun. 81, 3148–3162.CrossRefGoogle Scholar
  58. White, A.P., Gibson, D.L., Collinson, S.K., Banser, P.A., and Kay, W.W. 2003. Extracellular polysaccharides associated with thin aggregative fimbriae of Salmonella enterica serovar Enteritidis. J. Bacteriol. 185, 5398–5407.CrossRefGoogle Scholar
  59. Whitfield, C. 2006. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu. Rev. Biochem. 75, 39–68.CrossRefGoogle Scholar
  60. Wingender, J., Neu, T.R., and Flemming, H.C. 1999. Microbial extracellular polymeric substances: Characterization, structure, and function. Springer. Google Scholar
  61. Yaron, S. and Römling, U. 2014. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb. Biotechnol. 6, 496–516.Google Scholar
  62. Zahrt, T.C., Buchmeier, N., and Maloy, S. 1999. Effect of mutS and recD mutations on Salmonella virulence. Infect. Immun. 67, 6168–6172.Google Scholar
  63. Zaragoza, W.J., Noel, J.T., and Teplitski, M. 2012. Spontaneous nonrdar mutations increase fitness of Salmonella in plants. Environ. Microbiol. Rep. 4, 453–458.CrossRefGoogle Scholar
  64. Zhang, L. and Mah, T.F. 2008. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J. Bacteriol. 190, 4447–4452.CrossRefGoogle Scholar
  65. Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W., and Römling, U. 2001. The multicellular morphotypes of Salmonella Typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 39, 1452–1463.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • Rugare Maruzani
    • 1
  • Gabriel Sutton
    • 1
  • Paola Nocerino
    • 1
  • Massimiliano Marvasi
    • 1
    Email author
  1. 1.Department of Natural Sciences, Faculty of Science and TechnologyMiddlesex UniversityLondonUK

Personalised recommendations