Journal of Microbiology

, Volume 57, Issue 2, pp 143–153 | Cite as

Competition/antagonism associations of biofilm formation among Staphylococcus epidermidis Agr groups I, II, and III

  • Sergio Martínez-García
  • César I. Ortiz-García
  • Marisa Cruz-Aguilar
  • Juan Carlos Zenteno
  • José Martin Murrieta-Coxca
  • Sonia Mayra Pérez-Tapia
  • Sandra Rodríguez-Martínez
  • Mario E. Cancino-Diaz
  • Juan C. Cancino-DiazEmail author
Microbial Pathogenesis and Host-Microbe Interaction


Staphylococci have quorum-sensing (QS) systems that enable cell-to-cell communication, as well as the regulation of numerous colonization and virulence factors. The accessory gene regulator (Agr) operon is one of the Staphylococcus genus QS systems. Three groups (I, II, and III) are present in Staphylococcus epidermidis Agr operon. To date, it is unknown whether Agr groups can interact symbiotically during biofilm development. This study analyzed a symbiotic association among Agr groups during biofilm formation in clinical and commensal isolates. Different combinations among Agr group isolates was used to study biofilm formation in vitro and in vivo (using a mouse catheter-infection model). The analysis of Agr groups were also performed from samples of human skin (head, armpits, and nostrils). Different predominant coexistence was found within biofilms, suggesting symbiosis type. In vitro, Agr I had a competition with Agr II and Agr III. Agr II had a competition with Agr III, and Agr II was an antagonist to Agr I and III when the three strains were combined. In vivo, Agr II had a competition to Agr I, but Agr I and II were antagonists to Agr III. The associations found in vitro and in vivo were also found in different sites of the skin. Besides, other associations were observed: Agr III antagonized Agr I and II, and Agr III competed with Agr I and Agr II. These results suggest that, in S. epidermidis, a symbiotic association of competition and antagonism occurs among different Agr groups during biofilm formation.


symbiosis Staphylococcus epidermidis Agr clinical commensal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8322_MOESM1_ESM.pdf (359 kb)
Supplementary material, approximately 360 KB.


  1. Augustine, N., Kumar, P., and Thomas, S. 2010. Inhibition of Vibrio cholerae biofilm by AiiA enzyme produced from Bacillus spp. Arch. Microbiol. 192, 1019–1022.CrossRefGoogle Scholar
  2. Betanzos-Cabrera, G., Juárez-Verdayes, M.A., González-González, G., Cancino-Díaz, M.E., and Cancino-Díaz, J.C. 2009. Gatifloxacin, moxifloxacin, and balofloxacin resistance due to mutations in the gyrA and parC genes of Staphylococcus epidermidis strains isolated from patients with endophthalmitis, corneal ulcers and conjunctivitis. Ophthalmic Res. 42, 43–48.CrossRefGoogle Scholar
  3. Bijtenhoorn, P., Schipper, C., Hornung, C., Quitschau, M., Grond, S., Weiland, N., and Streit, W.R. 2011. BpiB05, a novel metagenome-derived hydrolase acting on N-acylhomoserine lactones. J. Biotechnol. 155, 86–94.CrossRefGoogle Scholar
  4. Canovas, J., Baldry, M., Bojer, M.S., Andersen, P.S., Grzeskowiak, P.K., Stegger, M., Damborg, P., Olsen, C.A., and Ingmer, H. 2016. Cross-talk between Staphylococcus aureus and other Staphylococcal species via the agr quorum sensing system. Front. Microbiol. 7, 1–13.CrossRefGoogle Scholar
  5. Chen, Y., Wang, X.Y., Huang, Y.C., Zhao, G.Q., Lei, Y.J., Ye, L.H., Huang, Q.B., and Duan, W.S. 2015. Study on the structure of Candida albicans-Staphylococcus epidermidis mixed species biofilm on polyvinyl chloride biomaterial. Cell Biochem. Biophys. 73, 461–468.CrossRefGoogle Scholar
  6. Christensen, G.D., Simpson, W.A., Younger, J.J., Baddour, L.M., Barrett, F.F., Melton, D.M., and Beachey, E.H. 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 22, 996–1006.Google Scholar
  7. Chu, W., Zere, T.R., Weber, M.M., Wood, T.K., Whiteley, M., Hidalgo-Romano, B., Valenzuela, E. Jr., and McLean, R.J. 2012. Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling. Appl. Environ. Microbiol. 78, 411–419.CrossRefGoogle Scholar
  8. Conlan, S., Mijares, L.A., Becker, J., Blakesley, R.W., Bouffard, G.G., Brooks, S., Coleman, H., Gupta, J., Gurson, N., Park, M., et al. 2012. Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates. Genome. Biol. 13, 1–13.CrossRefGoogle Scholar
  9. Dastgheyb, S.S., Villaruz, A.E., Le, K.Y., Tan, V.Y., Duong, A.C., Chatterjee, S.S., Cheung, G.Y., Joo, H.S., Hickok, N.J., and Otto, M. 2015. Role of phenol-soluble modulins in formation of Staphylococcus aureus biofilms in synovial fluid. Infect. Immun. 83, 2966–2975.CrossRefGoogle Scholar
  10. Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., and Greenberg, E.P. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298.CrossRefGoogle Scholar
  11. de Araujo, G.L., Coelho, L.R., de Carvalho, C.B., Maciel, R.M., Coronado, A., Rozenbaum, R., Ferreira-Carvalho, B.T., Figueiredo, A.M., and Teixeira, L.A. 2006. Commensal isolates of methicillin-resistant Staphylococcus epidermidis are also well equipped to produce biofilm on polystyrene surfaces. J. Antimicrob. Chemother. 57, 855–864.CrossRefGoogle Scholar
  12. Dong, Y.H., Wang, L.H., and Zhang, L.H. 2007. Quorum-quenching microbial infections: mechanisms and implications. Phil. Trans. R. Soc. B. 362, 1201–1211.CrossRefGoogle Scholar
  13. Dufour, P., Jarraud, S., Vandenesch, F., Greenland, T., Novick, R.P., Bes, M., Etienne, J., and Lina, G. 2002. High genetic variability of the agr locus in Staphylococcus species. J. Bacteriol. 184, 1180–1186.CrossRefGoogle Scholar
  14. Duggirala, A., Kenchappa, P., Sharma, S., Peeters, J.K., Ahmed, N., Garg, P., Das, T., and Hasnain, S.E. 2007. High-resolution genome profiling differentiated Staphylococcus epidermidis isolated from patients with ocular infections and normal individuals. Investig. Ophthalmol. Vis. Sci. 48, 3239–3245.CrossRefGoogle Scholar
  15. Fuqua, C. and Greenberg, E.P. 2002. Listening in on bacteria: acylhomoserine lactone signalling. Nat. Rev. Mol. Cell. Biol. 3, 685–695.CrossRefGoogle Scholar
  16. Ghaznavi-Rad, E., Nor Shamsudin, M., Sekawi, Z., Van Belkum, A., and Neela, V. 2010. A simplified multiplex PCR assay for fast and easy discrimination of globally distributed staphylococcal cassette chromosome mec types in meticillin-resistant Staphylococcus aureus. J. Med. Microbiol. 59, 1135–1139.CrossRefGoogle Scholar
  17. Heilmann, C., Schweitzer, O., Gerke, C., Vanittanakom, N., Mack, D., and Götz, F. 1996. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol. Microbiol. 20, 1083–1091.CrossRefGoogle Scholar
  18. Iwase, T., Uehara, Y., Shinji, H., Tajima, A., Seo, H., Takada, K., Agata, T., and Mizunoe, Y. 2010. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465, 346–349.CrossRefGoogle Scholar
  19. Janzon, L. and Arvidson, S. 1990. The role of the delta-lysin gene (hld) in the regulation of virulence genes by the accessory gene regulator (agr) in Staphylococcus aureus. EMBO J. 9, 1391–1399.CrossRefGoogle Scholar
  20. Jarraud, S., Lyon, G.J., Figueiredo, A.M.S., Gerard, L., Vandenesch, F., Etienne, J., Muir, T.W., and Novick, R.P. 2000. Exfoliatin-producing strains define a fourth agr specificity group in Staphylococcus aureus. J. Bacteriol. 182, 6517–6522.CrossRefGoogle Scholar
  21. Jarraud, S., Mougel, C., Thioulouse, J., Lina, G., Meugnier, H., Forey, F., Nesme, X., Etienne, J., and Vandenesch, F. 2002. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect. Immun. 70, 631–641.CrossRefGoogle Scholar
  22. Jayathilake, P.G., Jana, S., Rushton, S., Swailes, D., Bridgens, B., Curtis, T., and Chen, J. 2017. Extracellular polymeric substance production and aggregated bacteria colonization influence the competition of microbes in biofilms. Front. Microbiol. 8, 1–14.CrossRefGoogle Scholar
  23. Ji, G., Beavis, R.C., and Novick, R.P. 1995. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl. Acad. Sci. USA 92, 12055–12059.CrossRefGoogle Scholar
  24. Ji, G., Beavis, R., and Novick, R.P. 1997. Bacterial interference caused by autoinducing peptide variants. Science 276, 2027–2030.CrossRefGoogle Scholar
  25. Juárez-Verdayes, M.A., Reyes-López, M.Á., Cancino-Díaz, M.E., Muñoz-Salas, S., Rodríguez-Martínez, S., Zavala-Díaz De La Serna, F.J., Hernández-Rodríguez, C.H., and Cancino-Díaz, J.C. 2006. Isolation, vancomycin resistance and biofilm production of Staphylococcus epidermidis from patients with conjunctivitis, corneal ulcers, and endophthalmitis. Rev. Latinoam. Microbiol. 48, 238–246.Google Scholar
  26. Li, M., Guan, M., Jiang, X.F., Yuan, F.Y., Xu, M., Zhang, W.Z., and Lu, Y. 2004. Genetic polymorphism of the accessory gene regulator (agr) locus in Staphylococcus epidermidis and its association with pathogenicity. J. Med. Microbiol. 53, 545–549.CrossRefGoogle Scholar
  27. Lina, G., Jarraud, S., Ji, G., Greenland, T., Pedraza, A., Etienne, J., Novick, R.P., and Vandenesch, F. 1998. Transmembrane topology and histidine protein kinase activity of AgrC, the agr signal receptor in Staphylococcus aureus. Mol. Microbiol. 28, 655–662.CrossRefGoogle Scholar
  28. Morfeldt, E., Panova-Sapundjieva, I., Gustafsson, B., and Arvidson, S. 1996a. Detection of the response regulator AgrA in the cytosolic fraction of Staphylococcus aureus by monoclonal antibodies. FEMS Microbiol. Lett. 143, 195–201.CrossRefGoogle Scholar
  29. Morfeldt, E., Tegmark, K., and Arvidson, S. 1996b. Transcriptional control of the agr-dependent virulence gene regulator, RNAIII, in Staphylococcus aureus. Mol. Microbiol. 21, 1227–1237.CrossRefGoogle Scholar
  30. Musser, J.M., Schlievert, P.M., Chow, A.W., Ewan, P., Kreiswirth, B.N., Rosdahl, V.T., Naidu, A.S., Witte, W., and Selander, R.K. 1990. A single clone of Staphylococcus aureus causes the majority of cases of toxic shock syndrome. Proc. Natl. Acad. Sci. USA 87, 225–229.CrossRefGoogle Scholar
  31. Musthafa, K.S., Saroja, V., Pandian, S.K., and Ravi, A.V. 2011. Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl-homoserine-lactone-mediated virulence factors production in Pseudomonas aeruginosa (PAO1). J. Biosci. 36, 55–67.CrossRefGoogle Scholar
  32. Nadell, C.D., Foster, K.R., and Xavier, J.B. 2010. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput. Biol. 6, e1000716.CrossRefGoogle Scholar
  33. Novick, R.P., Ross, H.F., Projan, S.J., Kornblum, J., Kreiswirth, B., and Moghazeh, S. 1993. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 12, 3967–3975.CrossRefGoogle Scholar
  34. Olson, M.E., Todd, D.A., Schaeffer, C.R., Paharik, A.E., Van Dyke, M.J., Büttner, H., Dunman, P.M., Rohde, H., Cech, N.B., Fey, P.D., et al. 2014. Staphylococcus epidermidis agr quorum-sensing system: Signal identification, cross talk, and importance in colonization. J. Bacteriol. 196, 3482–3493.CrossRefGoogle Scholar
  35. Otto, M. 2009. Staphylococcus epidermidis: the “accidental” pathogen. Nat. Rev. Microbiol. 7, 555–567.CrossRefGoogle Scholar
  36. Otto, M., Echner, H., Voelter, W., and Gotz, F. 2001. Pheromone cross-inhibition between Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 69, 1957–1960.CrossRefGoogle Scholar
  37. Paharik, A.E., Parlet, C.P., Chung, N., Todd, D.A., Rodriguez, E.I., Van Dyke, M.J., Cech, N.B., and Horswill, A.R. 2017. Coagulasenegative staphylococcal strain prevents Staphylococcus aureus colonization and skin infection by blocking quorum sensing. Cell Host Microbe 22, 1–11.CrossRefGoogle Scholar
  38. Peng, H.L., Novick, R.P., Kreiswirth, B., Kornblum, J., and Schlievert, P. 1988. Cloning, characterization and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. J. Bacteriol. 170, 4365–4372.CrossRefGoogle Scholar
  39. Rendueles, O. and Ghigo, J.M. 2012. Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol. Rev. 36, 972–989.CrossRefGoogle Scholar
  40. Rendueles, O., Travier, L., Latour-Lambert, P., Fontaine, T., Magnus, J., Denamur, E., and Ghigo, J.M. 2011. Screening of Escherichia coli species biodiversity reveals new biofilm-associated antiadhesion polysaccharides. mBio 2, 1–12.CrossRefGoogle Scholar
  41. Rogers, K.L., Fey, P.D., and Rupp, M.E. 2009. Coagulase-negative staphylococcal infections. Infect. Dis. Clin. North Am. 23, 73–98.CrossRefGoogle Scholar
  42. Sakoulas, G., Eliopoulos, G.M., Moellering, R.C. Jr., Novick, R.P., Venkataraman, L., Wennersten, C., DeGirolami, P.C., Schwaber, M.J., and Gold, H.S. 2003. Staphylococcus aureus accessory gene regulator (agr) group II: is there a relationship to the development of intermediate-level glycopeptide resistance? J. Infect. Dis. 187, 929–938.CrossRefGoogle Scholar
  43. Sander, G., Börner, T., Kriegeskorte, A., von Eiff, C., Becker, K., and Mahabir, E. 2012. Catheter colonization and abscess formation due to Staphylococcus epidermidis with normal and small-colonyvariant phenotype is mouse strain dependent. PLoS One 7, e36602.CrossRefGoogle Scholar
  44. Schwarz, S., West, T.E., Boyer, F., Chiang, W.C., Carl, M.A., Hood, R.D., Rohmer, L., Tolker-Nielsen, T., Skerrett, S.J., and Mougous, J.D. 2010. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog. 6, e1001068.CrossRefGoogle Scholar
  45. Senadheera, D. and Cvitkovitch, D.G. 2008. Quorum sensing and biofilm formation by Streptococcus mutans. Adv. Exp. Med. Biol. 631, 178–188.CrossRefGoogle Scholar
  46. Shepherd, R.W. and Lindow, S.E. 2009. Two dissimilar N-acylhomoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. Appl. Environ. Microbiol. 75, 45–53.CrossRefGoogle Scholar
  47. Tamura, S., Yonezawa, H., Motegi, M., Nakao, R., Yoneda, S., Watanabe, H., Yamazaki, T., and Senpuku, H. 2009. Inhibiting effects of Streptococcus salivarius on dependent biofilm formation by Streptococcus mutans. Oral Microbiol. Immunol. 24, 152–161.CrossRefGoogle Scholar
  48. Tan, Y., Leonhard, M., and Schneider-Stickler, B. 2017. Evaluation of culture conditions for mixed biofilm formation with clinically isolated non-albicans Candida species and Staphylococcus epidermidis on silicone. Microb. Pathog. 112, 215–220.CrossRefGoogle Scholar
  49. Thomas, J.C., Vargas, M.R., Miragaia, M., Peacock, S.J., Archer, G.L., and Enright, M.C. 2007. Improved multilocus sequence typing scheme for Staphylococcus epidermidis. J. Clin. Microbiol. 45, 616–619.CrossRefGoogle Scholar
  50. Uçkay, I., Pittet, D., Vaudaux, P., Sax, H., Lew, D., and Waldvogel, F. 2009. Foreign body infections due to Staphylococcus epidermidis. Ann. Med. 41, 109–119.CrossRefGoogle Scholar
  51. Van Wamel, W.J.B., Van Rossum, G., Verhoef, J., Vandenbroucke-Grauls, C.M.J.E., and Fluit, A.C. 1998. Cloning and characterization of an accessory gene regulator (agr)-like locus from Staphylococcus epidermidis. FEMS Microbiol. Lett. 163, 1–9.CrossRefGoogle Scholar
  52. Wang, R., Khan, B.A., Cheung, G.Y.C., Bach, T.H., Jameson-Lee, M., Kong, K.F., Queck, S.Y., and Otto, M. 2011. Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J. Clin. Invest. 121, 238–248.CrossRefGoogle Scholar
  53. Yao, Y., Sturdevant, D.E., and Otto, M. 2005. Genomewide analysis of gene expression in Staphylococcus epidermidis biofilms: insights into the pathophysiology of S. epidermidis biofilms and the role of phenol-soluble modulins in formation of biofilms. J. Infect. Dis. 191, 289–298.CrossRefGoogle Scholar
  54. Zhang, K., McClure, J., Elsayed, S., Louie, T., and Conly, J.M. 2005. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 43, 5026–5033.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2019

Authors and Affiliations

  • Sergio Martínez-García
    • 1
  • César I. Ortiz-García
    • 1
  • Marisa Cruz-Aguilar
    • 2
  • Juan Carlos Zenteno
    • 2
  • José Martin Murrieta-Coxca
    • 3
  • Sonia Mayra Pérez-Tapia
    • 4
  • Sandra Rodríguez-Martínez
    • 3
  • Mario E. Cancino-Diaz
    • 3
  • Juan C. Cancino-Diaz
    • 1
    Email author
  1. 1.Laboratory of Immunomicrobiology, Department of MicrobiologyEscuela Nacional de Ciencias Biológicas-Instituto Politécnico NacionalMexico CityMexico
  2. 2.Laboratory of Genetics, Department of Genetics-Research UnitInstituto de Oftalmología Conde de ValencianaMexico CityMexico
  3. 3.Laboratory of Innate ImmunityEscuela Nacional de Ciencias Biológicas-Instituto Politécnico NacionalMexico CityMexico
  4. 4.“Unidad de Desarrollo e Investigación en Bioprocesos” (UDIBI), Department of ImmunologyEscuela Nacional de Ciencias Biológicas-Instituto Politécnico NacionalMexico CityMexico

Personalised recommendations