Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A phenazine anode for high-performance aqueous rechargeable batteries in a wide temperature range

Abstract

Aqueous rechargeable batteries are a possible strategy for large-scale energy storage systems. However, limited choices of anode materials restrict their further application. Here we report phenazine (PNZ) as stable anode materials in different alkali-ion (Li+, Na+, K+) electrolyte. A novel full cell is assembled by phenazine anode, Na0.44MnO2 cathode and 10 M NaOH electrolyte to further explore the electrochemical performance of phenazine anode. This battery is able to achieve high capacity (176.7 mAh·g−1 at 4 C (1.2·Ag−1)), ultralong cycling life (capacity retention of 80% after 13,000 cycles at 4 C), and excellent rate capacity (92 mAh·g−1 at 100 C (30 A·g−1)). The reaction mechanism of PNZ during charge—discharge process is demonstrated by in situ Raman spectroscopy, in situ Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Furthermore, the system is able to successfully operate at wide temperature range from −20 to 70 °C and achieves remarkable electrochemical performance.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. [1]

    Li, S.; Dong, Y. F.; Xu, L.; Xu, X.; He, L.; Mai, L. Q. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv. Mater.2014, 26, 3545–3553.

  2. [2]

    Kim, J.; Yoon, G.; Kim, H.; Park, Y. U.; Kang, K. Na3V(PO4)2: A new layered-type cathode material with high water stability and power capability for Na-ion batteries. Chem. Mater.2018, 30, 3683–3689.

  3. [3]

    Bin, D.; Wang, F.; Tamirat, A. G.; Suo, L. M.; Wang, Y. G.; Wang, C. S.; Xia, Y. Y. Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater.2018, 8, 1703008.

  4. [4]

    Pang, G.; Nie, P.; Yuan, C. Z.; Shen, L. F.; Zhang, X. G.; Zhu, J. J.; Ding, B. Enhanced performance of aqueous sodium-ion batteries using electrodes based on the NaTi2(PO4)3/MWNTs-Na0.44MnO2 system. Energy Technol.2014, 2, 705–712.

  5. [5]

    Lam, L. T.; Louey, R.; Haigh, N. P.; Lim, O. V.; Vella, D. G.; Phyland, C. G.; Vu, L. H.; Furukawa, J.; Takada, T.; Monma, D. et al. VRLA Ultrabattery for high-rate partial-state-of-charge operation. J. Power Sources2007, 174, 16–29.

  6. [6]

    Yu, N. F.; Gao, L. J.; Zhao, S. H.; Wang, Z. D. Electrodeposited PbO2 thin film as positive electrode in PbO2/AC hybrid capacitor. Electrochim. Acta2009, 54, 3835–3841.

  7. [7]

    Zhang, Y.; Wang, Y. H.; Wang, L.; Lo, C. M.; Zhao, Y.; Jiao, Y. D.; Zheng, G. F.; Peng, H. S. A fiber-shaped aqueous lithium ion battery with high power density. J. Mater. Chem. A2016, 4, 9002–9008.

  8. [8]

    Nian, Q. S.; Liu, S.; Liu, J.; Zhang, Q.; Shi, J. Q.; Liu, C.; Wang, R.; Tao, Z. L.; Chen, J. All-climate aqueous dual-ion hybrid battery with ultrahigh rate and ultralong life performance. ACS Appl. Energy Mater.2019, 2, 4370–4378.

  9. [9]

    Wang, Y. S.; Feng, Z. M.; Laul, D.; Zhu, W.; Provencher, M.; Trudeau, M. L.; Guerfi, A.; Zaghib, K. Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery. J. Power Sources2018, 374, 211–216.

  10. [10]

    Soundharrajan, V.; Sambandam, B.; Kim, S.; Alfaruqi, M. H.; Putro, D. Y.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y. K.; Kim, J. Na2V6O16-3H2O barnesite nanorod: An open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett.2018, 18, 2402–2410.

  11. [11]

    Hung, T. F.; Lan, W. H.; Yeh, Y. W.; Chang, W. S.; Yang, C. C.; Lin, J. C. Hydrothermal synthesis of sodium titanium phosphate nanoparticles as efficient anode materials for aqueous sodium-ion batteries. ACS Sustainable Chem. Eng.2016, 4, 7074–7079.

  12. [12]

    Nakamoto, K.; Sakamoto, R.; Sawada, Y.; Ito, M.; Okada, S. Over 2 V aqueous sodium-ion battery with prussian blue-type electrodes. Small Methods2019, 3, 1800220.

  13. [13]

    Xia, C.; Guo, J.; Li, P.; Zhang, X. X.; Alshareef, H. N. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew Chem., Int. Ed.2018, 57, 3943–3948.

  14. [14]

    Wan, F.; Zhang, L. L.; Dai, X.; Wang, X. Y.; Niu, Z. Q.; Chen, J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun.2018, 9, 1656.

  15. [15]

    Huang, J. H.; Guo, Z. W.; Ma, Y. Y.; Bin, D.; Wang, Y. G.; Xia, Y. Y. Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Methods2019, 3, 1800272.

  16. [16]

    Qiu, S.; Wu, X. Y.; Wang, M. Y.; Lucero, M.; Wang, Y.; Wang, J.; Yang, Z. Z.; Xu, W. Q.; Wang, Q.; Gu, M. et al. Nasicon-type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries. Nano Energy2019, 64, 103941.

  17. [17]

    Long, H. W.; Zeng, W.; Wang, H.; Qian, M. M.; Liang, Y. H.; Wang, Z. C. Self-assembled biomolecular 1D nanostructures for aqueous sodium-ion battery. Adv. Sci.2018, 5, 1700634.

  18. [18]

    Wang, Y. Y.; Hou, B. H.; Guo, J. Z.; Ning, Q. L.; Pang, W. L.; Wang, J. W.; Lu, C. L.; Wu, X. L. An ultralong lifespan and low-temperature workable sodium-ion full battery for stationary energy storage. Adv. Energy Mater.2018, 8, 1703252.

  19. [19]

    Jin, D. N.; Choi, S.; Jang, W.; Soon, A.; Kim, J.; Moon, H.; Lee, W.; Lee, Y.; Son, S.; Park, Y. C. et al. Bismuth islands for low-temperature sodium-beta alumina batteries. ACS Appl. Mater. Interfaces2019, 11, 2917–2924.

  20. [20]

    Sakaushi, K.; Hosono, E.; Nickerl, G.; Gemming, T.; Zhou, H. S.; Kaskel, S.; Eckert, J. Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device. Nat. Commun.2013, 4, 1485.

  21. [21]

    Wu, S. F.; Wang, W. X.; Li, M. C.; Cao, L. J.; Lyu, F. C.; Yang, M. Y.; Wang, Z. Y.; Shi, Y.; Nan, B.; Yu, S. C. et al. Highly durable organic electrode for sodium-ion batteries via a stabilized a-c radical intermediate. Nat. Commun.2016, 7, 13318.

  22. [22]

    Yuan, C. P.; Wu, Q.; Li, Q.; Duan, Q.; Li, Y. H.; Wang, H. G. Nanoengineered ultralight organic cathode based on aromatic carbonyl compound/graphene aerogel for green lithium and sodium ion batteries. ACS Sustainable Chem. Eng.2018, 6, 8392–8399.

  23. [23]

    Hou, M. Y.; Chen, L.; Guo, Z. W.; Dong, X. L.; Wang, Y. G.; Xia, Y. Y. A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production. Nat. Commun.2018, 9, 438.

  24. [24]

    Kim, D. J.; Jung, Y. H.; Bharathi, K. K.; Je, S. H.; Kim, D. K.; Coskun, A.; Choi, J. W. An aqueous sodium ion hybrid battery incorporating an organic compound and a prussian blue derivative. Adv. Energy Mater.2014, 4, 1400133.

  25. [25]

    Deng, W. W.; Shen, Y. F.; Qian, J. F.; Yang, H. X. A polyimide anode with high capacity and superior cyclability for aqueous na-ion batteries. Chem. Commun.2015, 51, 5097–5099.

  26. [26]

    Mohamed, A. I.; Whitacre, J. F. Capacity fade of NaTi2(PC4)3 in aqueous electrolyte solutions: Relating pH increases to long term stability. Electrochim. Acta2017, 235, 730–739.

  27. [27]

    Guo, Z. W.; Ma, Y. Y.; Dong, X. L.; Huang, J. H.; Wang, Y. G.; Xia, Y. Y. An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew Chem., Int. Ed.2018, 57, 11737–11741.

  28. [28]

    Liang, Y. L.; Jing, Y.; Gheytani, S.; Lee, K. Y.; Liu, P.; Facchetti, A.; Yao, Y. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater.2017, 16, 841–848.

  29. [29]

    Liu, C.; Ma, T.; Xia, K. X.; Hou, X. S.; Nian, Q. S.; Cai, Y. C.; Liang, J. High performance polyanthraquinone/Co-Ni(CH)2 aqueous batteries based on hydroxyl and potassium insertion/extraction reactions. Sustainable Energy Fuels2020, 4, 132–137.

  30. [30]

    Haupler, B.; Wild, A.; Schubert, U. S. Carbonyls: Powerful organic materials for secondary batteries. Adv. Energy Mater.2015, 5, 1402034.

  31. [31]

    Wu, X. W.; Yuan, X. H.; Yu, J. G.; Liu, J.; Wang, F. X.; Fu, L. J.; Zhou, W. X.; Zhu, Y. S.; Zhou, Q. M.; Wu, Y. P. A high-capacity dual core-shell structured MWCNTs@S@ppy nanocomposite anode for advanced aqueous rechargeable lithium batteries. Nanoscale2017, 9, 11004–11011.

  32. [32]

    Gu, T. T.; Zhou, M.; Liu, M. Y.; Wang, K. L.; Cheng, S. J.; Jiang, K. A polyimide-MWCNTs composite as high performance anode for aqueous Na-ion batteries. RSC Adv.2016, 6, 53319–53323.

  33. [33]

    Feng, Y. Z.; Zhang, Q.; Liu, S.; Liu, J.; Tao, Z. L.; Chen, J. A novel aqueous sodium-manganese battery system for energy storage. J. Mater. Chem. A2019, 7, 8122–8128.

  34. [34]

    Wang, Y. S.; Mu, L. Q.; Liu, J.; Yang, Z. Z.; Yu, X. Q.; Gu, L.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Q. et al. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv. Energy Mater.2015, 5, 1501005.

  35. [35]

    Liu, Q. N.; Hu, Z.; Chen, M. Z.; Gu, Q. F.; Dou, Y. H.; Sun, Z. Q.; Chou, S. L.; Dou, S. X. Multiangular rod-shaped Na0.44MnO2 as cathode materials with high rate and long life for sodium-ion batteries. ACS Appl. Mater. Interfaces2017, 9, 3644–3652.

  36. [36]

    Chen, Z. X.; Yuan, T. C.; Pu, X. J.; Yang, H. X.; Ai, X. P.; Xia, Y. Y.; Cao, Y. L. Symmetric sodium-ion capacitor based on Na0.44MnO2 nanorods for low-cost and high-performance energy storage. ACS Appl. Mater. Interfaces2018, 10, 11689–11698.

  37. [37]

    Liu, C.; Li, J. G.; Zhao, P. X.; Guo, W. L.; Yang, X. P. Fast preparation of Na0.44MnO2 nanorods via a high NaCH concentration hydrothermal soft chemical reaction and their lithium storage properties. J. Nanopar. Res.2015, 17, 142.

  38. [38]

    Brisbane, P. G.; Janik, L. J.; Tate, M. E.; Warren, R. F. Revised structure for the phenazine antibiotic from pseudomonas fluorescens 2–79 (NRRL B-15132). Antimicrob. Agent Chemother.1987, 31, 1967–1971.

  39. [39]

    Kellenberger, A.; Dmitrieva, E.; Dunsch, L. The stabilization of charged states at phenazine-like units in polyaniline under p-doping: An in situ ATR-FTIR spectroelectrochemical study. Phys. Chem. Chem. Phys.2011, 13, 3411–3420.

  40. [40]

    Li, W. H.; Li, X. Y.; Yu, N. T. Surface-enhanced hyper-Raman scattering and surface-enhanced Raman scattering studies of electroreduction of phenazine on silver electrode. Chem. Phy. Lett.2000, 327, 153–161.

  41. [41]

    Trchová, M.; Morávková, Z.; Dybal, J.; Stejskal, J. Detection of aniline oligomers on polyaniline-gold interface using resonance Raman scattering. ACS Appl. Mater. Interfaces2014, 6, 942–950.

  42. [42]

    Zhao, L. W.; Ni, J. F.; Wang, H. B.; Gao, L. J. Na0.44MnO2-CNT electrodes for non-aqueous sodium batteries. RSC Adv.2013, 3, 6650–6655.

  43. [43]

    Tian, B. B.; Ding, Z. J.; Ning, G. H.; Tang, W.; Peng, C. X.; Liu, B.; Su, J.; Su, C. L.; Loh, K. P. Amino group enhanced phenazine derivatives as electrode materials for lithium storage. Chem. Commun.2017, 53, 2914–2917.

  44. [44]

    Wan, F.; Zhang, L. L.; Wang, X. Y.; Bi, S. H.; Niu, Z. Q.; Chen, J. An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater.2018, 28, 1804975.

  45. [45]

    Kim, B. G.; Ma, X.; Chen, C.; Ie, Y.; Coir, E. W.; Hashemi, H.; Aso, Y.; Green, P. F.; Kieffer, J.; Kim, J. Energy level modulation of HCMC, LUMC, and band-gap in conjugated polymers for organic photovoltaic applications. Adv. Funct. Mater.2013, 23, 439–445.

  46. [46]

    Wang, C. C.; Du, D. F.; Song, M. M.; Wang, Y. H.; Li, F. J. A high-power Na3V2(PC4)3-Bi sodium-ion full battery in a wide temperature range. Adv. Energy Mater.2019, 9, 1900022.

  47. [47]

    Shin, Y.; Manthiram, A. High rate, superior capacity retention LiMn2−2yLiyNiyC4 spinel cathodes for lithium-ion batteries. Electrochem. Solid State Lett.2003, 6, A34–A36.

  48. [48]

    Lee, J. H.; Hong, J. K.; Jang, D. H.; Sun, Y. K.; Ch, S. M. Degradation mechanisms in doped spinels of LiM0.05Mn1.95C4 (M = Li, B, Al, Co, and Ni) for Li secondary batteries.J. Power Sources2000, 89, 7–14.

  49. [49]

    Takashima, T.; Hashimoto, K.; Nakamura, R. Mechanisms of pH-dependent activity for water oxidation to molecular oxygen by MnO2 electrocatalysts.J. Am. Chem. Soc.2012, 134, 1519–1527.

  50. [50]

    Dall’Asta, V.; Buchholz, D.; Chagas, L. G.; Dou, X. W.; Ferrara, C.; Quartarone, E.; Tealdi, C.; Passerini, S. Aqueous processing of Na0.44MnO2 cathode material for the development of greener Na-ion batteries. ACS Appl. Mater. Interfaces2017, 9, 34891–34899.

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (Nos. 2016YFB0901500 and 2016YFB0101201); the National Natural Science Foundation of China (No. 51771094), Ministry of Education of China (Nos. B12015 and IRT13R30), and Tianjin High-Tech (No. 18JCZDJC31500).

Author information

Correspondence to Zhanliang Tao.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Liu, C., Wang, J. et al. A phenazine anode for high-performance aqueous rechargeable batteries in a wide temperature range. Nano Res. (2020). https://doi.org/10.1007/s12274-020-2674-3

Download citation

Keywords

  • aqueous rechargeable batteries
  • phenazine
  • Na0.44MnO2
  • alkali-ion electrolyte
  • wide temperature