Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Salt-assisted growth and ultrafast photocarrier dynamics of large-sized monolayer ReSe2

  • 15 Accesses

Abstract

Owing to its anisotropic optical and electrical properties, rhenium diselenide (ReSe2) has garnered considerable attention recently as a candidate material for polarization-sensitive photodetectors. However, the direct and controllable synthesis of large-sized ReSe2 with a uniform thickness is still a great challenge. Herein, we have refined the synthesis method to obtain uniform monolayer ReSe2 flakes with a size of up to ~ 106 mm on sapphire via an ambient-pressure chemical vapor deposition technique using Na promoter from sodium chloride. Interestingly, optical pump-probe spectroscopy revealed a fast switching from saturable absorption (SA) to absorption enhancement (AE) in subpicosecond time scale, followed by a slower decay induced by exciton recombination. Furthermore, both AE and SA signals exhibited clear angular dependence with a periodicity of 180, which reflected the dichroism in nonlinear absorption dynamics. In addition, the photocarrier dynamics including free-carrier transport and subpicosecond relaxation due to exciton formation or surface trapping was probed using time resolved terahertz spectroscopy. We believe that our study serves as a reference for atomically controlled synthesis of large-sized ReSe2 and provides useful insights on its optoelectronic properties for novel device applications.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science2015, 349, 524–528.

  2. [2]

    Lin, Z. Y.; Liu, Y.; Halim, U.; Ding, M. N.; Liu, Y. Y.; Wang, Y. L.; Jia, C. C.; Chen, P.; Duan, X. D.; Wang, C. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature2018, 562, 254–258.

  3. [3]

    Zeng, M. Q.; Xiao, Y.; Liu, J. X.; Yang K.; Fu, L. Exploring twodimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev.2018, 118, 6236–6296.

  4. [4]

    Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun.2017, 8, 1906.

  5. [5]

    Wang, F.; Wang, Z. X.; Yin, L.; Cheng, R. Q.; Wang, J. J.; Wen, Y.; Shifa, T. A.; Wang, F. M.; Zhang, Y.; Zhan, X. Y. et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection. Chem. Soc. Rev.2018, 47, 6296–6341.

  6. [6]

    Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem.2013, 5, 263–275.

  7. [7]

    Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J. Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano2014, 8, 11154–11164.

  8. [8]

    Yang, S. X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S. S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J. B. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett.2015, 15, 1660–1666.

  9. [9]

    Lorchat, E.; Froehlicher, G.; Berciaud, S. Splitting of interlayer shear modes and photon energy dependent anisotropic Raman response in N-layer ReSe2 and ReS2. ACS Nano2016, 10, 2752–2760.

  10. [10]

    Hong, M.; Zhou, X. B.; Gao, N.; Jiang, S. L.; Xie, C. Y.; Zhao, L. Y.; Gao, Y.; Zhang, Z. P.; Yang, P. F.; Shi, Y. P. et al. Identifying the non-identical outermost selenium atoms and invariable band gaps across the grain boundary of anisotropic rhenium diselenide. ACS Nano2018, 12, 10095–10103.

  11. [11]

    Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. T.; Lu, S. H. et al. Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano2016, 10, 8067–8077.

  12. [12]

    Arora, A.; Noky, J.; Drüppel, M.; Jariwala, B.; Deilmann, T.; Schneider, R.; Schmidt, R.; del Pozo-Zamudio, O.; Stiehm, T.; Bhattacharya, A. et al. Highly anisotropic in-plane excitons in atomically thin and bulklike 1T’-ReSe2. Nano Lett.2017, 17, 3202–3207.

  13. [13]

    Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater.2016, 28, 8296–8301.

  14. [14]

    Cui, F. F.; Li, X. B.; Feng, Q. L.; Yin, J. B.; Zhou, L.; Liu, D. Y.; Liu, K. Q.; He, X. X.; Liang, X.; Liu, S. Z. et al. Epitaxial growth of largearea and highly crystalline anisotropic ReSe2 atomic layer. Nano Res.2017, 10, 2732–2742.

  15. [15]

    Jiang, S. L.; Zhang, Z. P.; Zhang, N.; Huan, Y. Y.; Gong, Y.; Sun, M. X.; Shi, J. P.; Xie, C. Y.; Yang, P. F.; Fang, Q. Y. et al. Application of chemical vapor-deposited monolayer ReSe2 in the electrocatalytic hydrogen evolution reaction. Nano Res.2018, 11, 1787–1797.

  16. [16]

    Jiang, S. L.; Hong, M.; Wei, W.; Zhao, L. Y.; Zhang, N.; Zhang, Z. P.; Yang, P. F.; Gao, N.; Zhou, X. B.; Xie, C. Y. et al. Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Commun. Chem.2018, 1, 17.

  17. [17]

    Xie, C. Y.; Jiang, S. L.; Zou, X. L.; Sun, Y. W.; Zhao, L. Y.; Hong, M.; Chen, S. L.; Huan, Y. H.; Shi, J. P.; Zhou, X. B. et al. Spaceconfined growth of monolayer ReSe2 under a graphene layer on Au foils. Nano Res.2019, 12, 149–157.

  18. [18]

    Ji, Q. Q.; Kan, M.; Zhang, Y.; Guo, Y.; Ma, D. L.; Shi, J. P.; Sun, Q.; Chen, Q.; Zhang, Y. F.; Liu, Z. F. Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire. Nano Lett.2015, 15, 198–205.

  19. [19]

    Shi, Y. P.; Yang, P. F.; Jiang, S. L.; Zhang, Z. P.; Huan, Y. H.; Xie, C. Y.; Hong, M.; Shi, J. P.; Zhang, Y. F. Na-assisted fast growth of large single-crystal MoS2 on sapphire. Nanotechnology2019, 30, 034002.

  20. [20]

    Jiang, S. L.; Xie, C. Y.; Gu, Y.; Zhang, Q. H.; Wu, X. X.; Sun, Y. L.; Li, W.; Shi, Y. P.; Zhao, L. Y.; Pan, S. Y. et al. Anisotropic growth and scanning tunneling microscopy identification of ultrathin evenlayered PdSe2 ribbons. Small2019, 15, 1902789.

  21. [21]

    Kim, H.; Ovchinnikov, D.; Deiana, D.; Unuchek, D.; Kis, A. Suppressing nucleation in metal–organic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett.2017, 17, 5056–5063.

  22. [22]

    Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature2018, 556, 355–359.

  23. [23]

    He, J. Q.; Zhang, L.; He, D. W.; Wang, Y. S.; He, Z. Y.; Zhao, H. Ultrafast transient absorption measurements of photocarrier dynamics in monolayer and bulk ReSe2. Opt. Express2018, 26, 21501–21509.

  24. [24]

    Liu, F.; Zhao, X.; Yan, X. Q.; Xie, J. F.; Hui, W. W.; Xin, X. F.; Liu, Z. B.; Tian, J. G. Ultrafast nonlinear absorption and carrier relaxation in ReS2 and ReSe2 films. J. Appl. Phys.2019, 125, 173105.

  25. [25]

    Cui, Q. N.; He, J. Q.; Bellus, M. Z.; Mirzokarimov, M.; Hofmann, T.; Chiu, H. Y.; Antonik, M.; He, D. W.; Wang, Y. S.; Zhao, H. Transient absorption measurements on anisotropic monolayer ReS2. Small2015, 11, 5565–5571.

  26. [26]

    Wang, X. F.; Shinokita, K.; Lim, H. E.; Mohamed, N. B.; Miyauchi, Y.; Cuong, N. T.; Okada, S.; Matsuda, K. Direct and indirect exciton dynamics in few-layered ReS2 revealed by photoluminescence and pump-probe spectroscopy. Adv. Funct. Mater.2019, 29, 1806169.

  27. [27]

    Wen, W.; Zhu, Y. M.; Liu, X. L.; Hsu, H. P.; Fei, Z.; Chen, Y. F.; Wang, X. S.; Zhang, M.; Lin, K. H.; Huang, F. S. et al. Anisotropic spectroscopy and electrical properties of 2D ReS2(1–x)Se2x alloys with distorted 1T structure. Small2017, 13, 1603788.

  28. [28]

    Ceballos, F.; Cui, Q. N.; Bellus, M. Z.; Zhao, H. Exciton formation in monolayer transition metal dichalcogenides. Nanoscale2016, 8, 11681–11688.

  29. [29]

    Steinleitner, P.; Merkl, P.; Nagler, P.; Mornhinweg, J.; Schüller, C.; Korn, T.; Chernikov, A.; Huber, R. Direct observation of ultrafast exciton formation in a monolayer of WSe2. Nano Lett.2017, 17, 1455–1460.

  30. [30]

    Wu, K. D.; Chen, B.; Yang, S. J.; Wang, G.; Kong, W.; Cai, H.; Aoki, T.; Soignard, E.; Marie, X.; Yano, A. et al. Domain architectures and grain boundaries in chemical vapor deposited highly anisotropic ReS2 monolayer films. Nano Lett.2016, 16, 5888–5894.

  31. [31]

    Jiang, S. L.; Zhao, L. Y.; Shi, Y. P.; Xie, C. Y.; Zhang, N.; Zhang, Z. P.; Huan, Y. H.; Yang, P. F.; Hong, M.; Zhou, X. B. et al. Temperaturedependent Raman spectroscopy studies of the interface coupling effect of monolayer ReSe2 single crystals on Au foils. Nanotechnology2018, 29, 204003.

  32. [32]

    Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun.2018, 9, 979.

  33. [33]

    Suess, R. J.; Jadidi, M. M.; Murphy, T. E.; Mittendorff, M. Carrier dynamics and transient photobleaching in thin layers of black phosphorus. Appl. Phys. Lett.2015, 107, 081103.

  34. [34]

    Meng, X. H.; Zhou, Y. J.; Chen, K.; Roberts, R. H.; Wu, W. Z.; Lin, J. F.; Chen, R. T.; Xu, X. C.; Wang, Y. G. Anisotropic saturable and excited-state absorption in bulk ReS2. Adv. Opt. Mater.2018, 6, 1800137.

  35. [35]

    Ceballos, F.; Zhao, H. Ultrafast laser spectroscopy of twodimensional materials beyond graphene. Adv. Funct. Mater.2017, 27, 1604509.

  36. [36]

    Ge, S. F.; Li, C. K.; Zhang, Z. M.; Zhang, C. L.; Zhang, Y. D.; Qiu, J.; Wang, Q. S.; Liu, J. K.; Jia, S.; Feng, J. et al. Dynamical evolution of anisotropic response in black phosphorus under ultrafast photoexcitation. Nano Lett.2015, 15, 4650–4656.

  37. [37]

    Malic, E.; Winzer, T.; Knorr, A. Efficient orientational carrier relaxation in optically excited graphene. Appl. Phys. Lett.2012, 101, 213110.

  38. [38]

    Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B2012, 86, 115409.

  39. [39]

    Berkelbach, T. C.; Hybertsen, M. S.; Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B2013, 88, 045318.

  40. [40]

    Tielrooij, K. J.; Song, J. C. W.; Jensen, S. A.; Centeno, A.; Pesquera, A.; Elorza, A. Z.; Bonn, M.; Levitov, L. S.; Koppens, F. H. L. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys.2013, 9, 248–252.

  41. [41]

    Nuss, M. C.; Auston, D. H.; Capasso, F. Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide. Phys. Rev. Lett.1987, 58, 2355–2358.

  42. [42]

    Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev.1965, 140, A1133–A1138.

  43. [43]

    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.1996, 77, 3865–3868.

  44. [44]

    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B1996, 54, 11169–11186.

  45. [45]

    Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.1996, 6, 15–50.

  46. [46]

    Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B1976, 13, 5188–5192.

Download references

Acknowledgments

The work was supported by the National Key Research and Development Program of China (Nos. 2018YFA0703700, 2017YFA0304600, and 2017YFA0205700), the National Natural Science Foundation of China (Nos. 51861135201, 21473001, 11774354, 11674329, and 51727806), Beijing Natural Science Foundation (No. 2192021), the Project funded by China Postdoctoral Science Foundation (No. 2018M640023), Chinese Academy of Science (No. YZJJ201705), Open Research Fund Program of the State Key Laboratory of Low-dimensional Quantum Physics (No. KF201907), and Start-up Funding of Peking University.

Author information

Correspondence to Shaolong Jiang or Fuhai Su.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Yang, J., Shi, Y. et al. Salt-assisted growth and ultrafast photocarrier dynamics of large-sized monolayer ReSe2. Nano Res. (2020). https://doi.org/10.1007/s12274-020-2673-4

Download citation

Keywords

  • ReSe2
  • chemical vapor deposition
  • sodium chloride
  • large size
  • ultrafast photocarrier dynamics