Advertisement

Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia

  • Lu-Pan Yuan
  • Ze-Yuan Wu
  • Wen-Jie JiangEmail author
  • Tang Tang
  • Shuai Niu
  • Jin-Song HuEmail author
Research Article

Abstract

The electrochemical nitrogen reduction reaction (NRR) as an energy-efficient approach for ammonia synthesis is hampered by the low ammonia yield and ambiguous reaction mechanism. Herein, phosphorus-doped carbon nanotube (P-CNTs) is developed as an efficient metal-free electrocatalyst for NRR with a remarkable NH3 yield of 24.4 μg·h−1·mg−1cat. and partial current density of 0.61 mA·cm−2. Such superior activity is found to be from P doping and highly conjugated CNTs substrate. Experimental and theoretical investigations discover that the electron-deficient phosphorus sites with Lewis acidity should be genuine active sites and NRR on P-CNTs follows the distal pathway. These findings provide insightful understanding on NRR processes on P-CNTs, opening up opportunities for the rational design of highly-active cost-effective metal-free catalysts for electrochemical ammonia synthesis.

Keywords

P-doped carbon nanotubes nitrogen reduction reaction active sites reaction pathway electrocatalysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We acknowledge the financial supports are from the National Key Research and Development Program of China (No. 2016YFB0101202), the National Natural Science Foundation of China (Nos. 91645123 and 21773263).

Supplementary material

12274_2020_2637_MOESM1_ESM.pdf (3.1 mb)
Phosphorus-doping activates carbon nanotubes for efficient electroreduction of nitrogen to ammonia

References

  1. [1]
    Kitano, M.; Inoue, Y.; Yamazaki, Y.; Hayashi, F.; Kanbara, S.; Matsuishi, S.; Yokoyama, T.; Kim, S. W.; Hara, M.; Hosono, H. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 2012, 4, 934–940.CrossRefGoogle Scholar
  2. [2]
    Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.CrossRefGoogle Scholar
  3. [3]
    Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.CrossRefGoogle Scholar
  4. [4]
    He, C.; Wu, Z. Y.; Zhao, L.; Ming, M.; Zhang, Y.; Yi, Y. P.; Hu, J. S. Identification of FeN4 as an efficient active site for electrochemical N2 reduction. ACS Catal. 2019, 9, 7311–7317.CrossRefGoogle Scholar
  5. [5]
    Hao, Y. C.; Guo, Y.; Chen, L. W.; Shu, M.; Wang, X. Y.; Bu, T. A.; Gao, W. Y.; Zhang, N.; Su, X.; Feng, X. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2019, 2, 448–456.CrossRefGoogle Scholar
  6. [6]
    Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem2019, 5, 204–214.CrossRefGoogle Scholar
  7. [7]
    Zhao, W. H.; Zhang, L. F.; Luo, Q. Q.; Hu, Z. P.; Zhang, W. H.; Smith, S.; Yang, J. L. Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS Catal. 2019, 9, 3419–3425.CrossRefGoogle Scholar
  8. [8]
    Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. W. et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.CrossRefGoogle Scholar
  9. [9]
    Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature2019, 570, 504–508.CrossRefGoogle Scholar
  10. [10]
    Gao, X.; An, L.; Qu, D.; Jiang, W. S.; Chai, Y. X.; Sun, S. R.; Liu, X. Y.; Sun, Z. C. Enhanced photocatalytic N2 fixation by promoting N2 adsorption with a co-catalyst. Sci. Bull. 2019, 64, 918–925.CrossRefGoogle Scholar
  11. [11]
    Zhao, Y. X.; Shi, R.; Bian, X. A.; Zhou, C.; Zhao, Y. F.; Zhang, S.; Wu, F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H. et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: How to improve the reliability of NH3 production rates? Adv. Sci. 2019, 6, 1802109.CrossRefGoogle Scholar
  12. [12]
    Yang, L. J.; Shui, J. L.; Du, L.; Shao, Y. Y.; Liu, J.; Dai, L. M.; Hu, Z. Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present, and future. Adv. Mater. 2019, 31, 1804799.CrossRefGoogle Scholar
  13. [13]
    Zhao, S. L.; Wang, D. W.; Amal, R.; Dai, L. M. Carbon-based metalfree catalysts for key reactions involved in energy conversion and storage. Adv. Mater. 2019, 31, 1801526.CrossRefGoogle Scholar
  14. [14]
    Duan, X. C.; Xu, J. T.; Wei, Z. X.; Ma, J. M.; Guo, S. J.; Wang, S. Y.; Liu, H. K.; Dou, S. X. Metal-free carbon materials for CO2 electrochemical reduction. Adv. Mater. 2017, 29, 1701784.CrossRefGoogle Scholar
  15. [15]
    Zhang, J. T.; Xia, Z. H.; Dai, L. M. Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 2015, 1, e1500564.CrossRefGoogle Scholar
  16. [16]
    Chen, C.; Yan, D. F.; Wang, Y.; Zhou, Y. Y.; Zou, Y. Q.; Li, Y. F.; Wang, S. Y. B–N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency. Small2019, 15, 1805029.CrossRefGoogle Scholar
  17. [17]
    Wang, W.; Shang, L.; Chang, G. J.; Yan, C. Y.; Shi, R.; Zhao, Y. X.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Intrinsic carbondefect- driven electrocatalytic reduction of carbon dioxide. Adv. Mater. 2019, 31, 1808276.CrossRefGoogle Scholar
  18. [18]
    Gong, K. P.; Du, F.; Xia, Z. H.; Durstock, M.; Dai, L. M. Nitrogendoped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science2009, 323, 760–764.CrossRefGoogle Scholar
  19. [19]
    Song, P. F.; Wang, H.; Kang, L.; Ran, B. C.; Song, H. H.; Wang, R. M. Electrochemical nitrogen reduction to ammonia at ambient conditions on nitrogen and phosphorus co-doped porous carbon. Chem. Commun. 2019, 55, 687–690.CrossRefGoogle Scholar
  20. [20]
    Song, Y.; Johnson, D.; Peng, R.; Hensley, D. K.; Bonnesen, P. V.; Liang, L. B.; Huang, J. S.; Yang, F. C.; Zhang, F.; Qiao, R. et al. A physical catalyst for the electrolysis of nitrogen to ammonia. Sci. Adv. 2018, 4, e1700336.CrossRefGoogle Scholar
  21. [21]
    Xia, L.; Wu, X. F.; Wang, Y.; Niu, Z. G.; Liu, Q.; Li, T. S.; Shi, X. F.; Asiri, A. M.; Sun, X. P. S-doped carbon nanospheres: An efficient electrocatalyst toward artificial N2 fixation to NH3. Small Methods2019, 3, 1800251.CrossRefGoogle Scholar
  22. [22]
    Yu, X. M.; Han, P.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule2018, 2, 1610–1622.CrossRefGoogle Scholar
  23. [23]
    Liu, Y. M.; Su, Y.; Quan, X.; Fan, X. F.; Chen, S.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B..; Zhao, J. J. Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 2018, 8, 1186–1191.CrossRefGoogle Scholar
  24. [24]
    Yuan, D.; Wei, Z. X.; Han, P.; Yang, C.; Huang, L. S.; Gu, Z. X.; Ding, Y.; Ma, J. M.; Zheng, G. F. Electron distribution tuning of fluorinedoped carbon for ammonia electrosynthesis. J. Mater. Chem. A2019, 7, 16979–16983.CrossRefGoogle Scholar
  25. [25]
    Wang, Y. Q.; Zou, Y. Q.; Tao, L.; Wang, Y. Y.; Huang, G.; Du, S. Q.; Wang, S. Y. Rational design of three-phase interfaces for electrocatalysis. Nano Res. 2019, 12, 2055–2066.CrossRefGoogle Scholar
  26. [26]
    Ji, S.; Wang, Z. X.; Zhao, J. X. A boron-interstitial doped C2N layer as a metal-free electrocatalyst for N2 fixation: A computational study. J. Mater. Chem. A2019, 7, 2392–2399.CrossRefGoogle Scholar
  27. [27]
    Lv, C. D.; Qian, Y. M.; Yan, C. S.; Ding, Y.; Liu, Y. Y.; Chen, G.; Yu, G. H. Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 10246–10250.CrossRefGoogle Scholar
  28. [28]
    Liu, H. M.; Wei, L.; Liu, F.; Pei, Z. X.; Shi, J.; Wang, Z. J.; He, D. H.; Chen, Y. Homogeneous, heterogeneous, and biological catalysts for electrochemical N2 reduction toward NH3 under ambient conditions. ACS Catal. 2019, 9, 5245–5267.CrossRefGoogle Scholar
  29. [29]
    Lin, Y. M.; Wu, K. H.; Lu, Q.; Gu, Q. Q.; Zhang, L. Y.; Zhang, B. S.; Su, D. S.; Plodinec, M.; Schlögl, R.; Heumann, S. Electrocatalytic water oxidation at quinone-on-carbon: A model system study. J. Am. Chem. Soc. 2018, 140, 14717–14724.CrossRefGoogle Scholar
  30. [30]
    Oh, S.; Gallagher, J. R.; Miller, J. T.; Surendranath, Y. Graphiteconjugated rhenium catalysts for carbon dioxide reduction. J. Am. Chem. Soc. 2016, 138, 1820–1823.CrossRefGoogle Scholar
  31. [31]
    Luo, H.; Jiang, W. J.; Zhang, Y.; Niu, S.; Tang, T.; Huang, L. B.; Chen, Y. Y.; Wei, Z. D.; Hu, J. S. Self-terminated activation for high-yield production of N,P-codoped nanoporous carbon as an efficient metalfree electrocatalyst for Zn-air battery. Carbon2018, 128, 97–105.CrossRefGoogle Scholar
  32. [32]
    Te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; Van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem.2001, 22, 931–967.CrossRefGoogle Scholar
  33. [33]
    Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932–4937.CrossRefGoogle Scholar
  34. [34]
    Yang, X. H.; Liu, P.; Zhou, D. L.; Gao, F.; Wang, X. H.; Lv, S. W.; Yuan, Z.; Jin, X.; Zhao, W.; Wei, H. M. et al. High temperature performance of coaxial h-BN/CNT wires above 1,000 °C: Thermionic electron emission and thermally activated conductivity. Nano Res. 2019, 12, 1855–1861.CrossRefGoogle Scholar
  35. [35]
    Wang, R.; Dong, X. Y.; Du, J.; Zhao, J. Y.; Zang, S. Q. MOFderived bifunctional Cu3P nanoparticles coated by a N,P-codoped carbon shell for hydrogen evolution and oxygen reduction. Adv. Mater. 2018, 30, 1703711.CrossRefGoogle Scholar
  36. [36]
    Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.CrossRefGoogle Scholar
  37. [37]
    Jiang, H. L.; Zhu, Y. H.; Feng, Q.; Su, Y. H.; Yang, X. L.; Li, C. Z. Nitrogen and phosphorus dual-doped hierarchical porous carbon foams as efficient metal-free electrocatalysts for oxygen reduction reactions. Chem.—Eur. J. 2014, 20, 3106–3112.CrossRefGoogle Scholar
  38. [38]
    Yang, D. S.; Bhattacharjya, D.; Inamdar, S.; Park, J.; Yu, J. S. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. J. Am. Chem. Soc. 2012, 134, 16127–16130.CrossRefGoogle Scholar
  39. [39]
    Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 μgNH3•mg−1 cat.•h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.CrossRefGoogle Scholar
  40. [40]
    Wang, Y.; Shi, M. M.; Bao, D.; Meng, F. L.; Zhang, Q.; Zhou, Y. T.; Liu, K. H.; Zhang, Y.; Wang, J. Z.; Chen, Z. W. et al. Generating defect-rich bismuth for enhancing the rate of nitrogen electroreduction to ammonia. Angew. Chem., Int. Ed. 2019, 58, 9464–9469.CrossRefGoogle Scholar
  41. [41]
    Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.CrossRefGoogle Scholar
  42. [42]
    Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.CrossRefGoogle Scholar
  43. [43]
    Nazemi, M.; Panikkanvalappil, S. R.; El-Sayed, M. A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy2018, 49, 316–323.CrossRefGoogle Scholar
  44. [44]
    Lv, C. D.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 6073–6076.CrossRefGoogle Scholar
  45. [45]
    Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H. L.; Feng, X. F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.CrossRefGoogle Scholar
  46. [46]
    Yao, Y.; Zhu, S. Q.; Wang, H. J.; Li, H.; Shao, M. H. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 2018, 140, 1496–1501.CrossRefGoogle Scholar
  47. [47]
    Song, P. F.; Kang, L.; Wang, H.; Guo, R.; Wang, R. M. Nitrogen (N), phosphorus (P)-codoped porous carbon as a metal-free electrocatalyst for N2 reduction under ambient conditions. ACS Appl. Mater. Interfaces2019, 11, 12408–12414.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations