Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound

  • Wukui Tang
  • Xiaofang LiuEmail author
  • Ya Li
  • Yanhui Pu
  • Yao Lu
  • Zhiming Song
  • Qiang Wang
  • Ronghai YuEmail author
  • Jianglan ShuiEmail author
Research Article


Design and synthesis of highly efficient and cost-effective bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) remain a big challenge. Herein, a quaternary amorphous nanocompound Ni-Fe-P-B has been synthesized by a facile, scalable co-reduction method. The Ni-Fe-P-B exhibits high electrocatalytic activity and outstanding durability for both HER and OER, delivering a current density of 10 mAcm−2 at overpotentials of 220 and 269 mV, respectively. When loaded on carbon fiber paper (CFP) as a bifunctional catalyst, the Ni-Fe-P-B@CFP electrode requires a low cell voltage of 1.58 V to obtain 10 mAcm−2 for overall water splitting with negligible recession over 60 h. The excellent catalytic performances of Ni-Fe-P-B mainly benefit from the metal-metalloid combined composition modulation and the unique amorphous structure. This work provides new insights into the design of robust bifunctional catalysts for water splitting, and may promote the development of multicomponent amorphous catalysts.


electrocatalyst oxygen evolution reaction hydrogen evolution reaction water splitting amorphous 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is financially supported by the National Natural Science Foundation of China (Nos. U1832138, 51731002, 51971008, 51671010 and 51920105001) and Fundamental Research Funds for the Central Universities.

Supplementary material

12274_2020_2627_MOESM1_ESM.pdf (4.3 mb)
Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound


  1. [1]
    Liu, W.; Hu, E. Y.; Jiang, H.; Xiang, Y. J.; Weng, Z.; Li, M.; Fan, Q.; Yu, X. Q.; Altman, E. I.; Wang, H. L. A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nat. Commun.2016, 7, 10771.CrossRefGoogle Scholar
  2. [2]
    Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J. D.; Norskov, J. K.; Abild-Pedersen, F.; Jaramillo, T. F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci.2015, 8, 3022–3029.CrossRefGoogle Scholar
  3. [3]
    Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater.2017, 29, 1605838.CrossRefGoogle Scholar
  4. [4]
    Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev.2016, 45, 1781.CrossRefGoogle Scholar
  5. [5]
    Qi, J.; Zhang, W.; Cao, R. Solar-to-hydrogen energy conversion based on water splitting. Adv. Energy Mater.2018, 8, 1701620.CrossRefGoogle Scholar
  6. [6]
    Li, J.; Zheng, G. F. One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv. Sci.2017, 4, 1600380.CrossRefGoogle Scholar
  7. [7]
    Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun.2017, 8, 15437.CrossRefGoogle Scholar
  8. [8]
    Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy2017, 37, 136–157.CrossRefGoogle Scholar
  9. [9]
    Tang, C.; Cheng, N. Y.; Pu, Z. H.; Xing, W.; Sun, X. P. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem., Int. Ed.2015, 54, 9351–9355.CrossRefGoogle Scholar
  10. [10]
    Yu, F.; Zhou, H. Q.; Huang, Y. F.; Sun, J. Y.; Qin, F.; Bao, J. M.; Goddard III, W. A.; Chen, S.; Ren, Z. F. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun.2018, 9, 2551.CrossRefGoogle Scholar
  11. [11]
    Chen, L. Y.; Liu, X. F.; Zheng, L. R.; Li, Y. C.; Guo, X.; Wan, X.; Liu, Q. T.; Shang, J. X.; Shui, J. L. Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts. Appl. Catal. B: Environ.2019, 256, 117849.CrossRefGoogle Scholar
  12. [12]
    Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal.2019, 2, 259–268.CrossRefGoogle Scholar
  13. [13]
    Lyu, F.; Wang, Q. F.; Choi, S. M.; Yin, Y. D. Noble-metal-free electrocatalysts for oxygen evolution. Small2019, 15, 1804201.CrossRefGoogle Scholar
  14. [14]
    Gong, M.; Wang, D. Y.; Chen, C. C.; Hwang, B. J.; Dai, H. J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res.2016, 9, 28–46.CrossRefGoogle Scholar
  15. [15]
    Chen, J. N.; Yuan, X. L.; Lyu, F.; Zhong, Q. X.; Hu, H. C.; Pan, Q.; Zhang, Q. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A2019, 7, 1281–1286.CrossRefGoogle Scholar
  16. [16]
    Xue, L. F.; Li, Y. C.; Liu, X. F.; Liu, Q. T.; Shang, J. X.; Duan, H. P.; Dai, L. M.; Shui, J. L. Zigzag carbon as efficient and stable oxygen reduction electrocatalyst for proton exchange membrane fuel cells. Nat. Commun.2018, 9, 3819.CrossRefGoogle Scholar
  17. [17]
    Liu, Q. T.; Liu, X. F.; Zheng, L. R.; Shui, J. L. The solid-phase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells. Angew. Chem., Int. Ed.2018, 57, 1204–1208.CrossRefGoogle Scholar
  18. [18]
    Stern, L. A.; Feng, L. G.; Song, F.; Hu, X. L. Ni2P as a janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci.2015, 8, 2347–2351.CrossRefGoogle Scholar
  19. [19]
    Zeng, X. J.; Shui, J. L.; Liu, X. F.; Liu, Q. T.; Li, Y. C.; Shang, J. X.; Zheng, L. R.; Yu, R. H. Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties. Adv. Energy Mater.2018, 8, 1701345.CrossRefGoogle Scholar
  20. [20]
    You, B.; Sun, Y. J. Hierarchically porous nickel sulfide multifunctional superstructures. Adv. Energy Mater.2016, 6, 1502333.CrossRefGoogle Scholar
  21. [21]
    Yin, J.; Li, Y. X.; Lv, F.; Lu, M.; Sun, K.; Wang, W.; Wang, L.; Cheng, F. Y.; Li, Y. F.; Xi, P. X. et al. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-air batteries driven water splitting devices. Adv. Mater.2017, 29, 1704681.CrossRefGoogle Scholar
  22. [22]
    Xu, X.; Song, F.; Hu, X. A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun.2016, 7, 12324.CrossRefGoogle Scholar
  23. [23]
    Xie, J. F.; Qu, H. C.; Xin, J. P.; Zhang, X. X.; Cui, G. W.; Zhang, X. D.; Bao, J.; Tang, B.; Xie, Y. Defect-rich MoS2 nanowall catalyst for efficient hydrogen evolution reaction. Nano Res.2017, 10, 1178–1188.CrossRefGoogle Scholar
  24. [24]
    Chen, T.; Tan, Y. W. Hierarchical CoNiSe2 nano-architecture as a high-performance electrocatalyst for water splitting. Nano Res.2018, 11, 1331–1344.CrossRefGoogle Scholar
  25. [25]
    Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc.2013, 135, 9267–9270.CrossRefGoogle Scholar
  26. [26]
    Liang, H. F.; Gandi, A. N.; Anjum, D. H.; Wang, X. B.; Schwingenschlögl, U.; Alshareef, H. N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett.2016, 16, 7718–7725.CrossRefGoogle Scholar
  27. [27]
    Ma, B.; Yang, Z. C.; Chen, Y. T.; Yuan, Z. H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res.2019, 12, 375–380.CrossRefGoogle Scholar
  28. [28]
    Yao, Y. D.; Mahmood, N.; Pan, L.; Shen, G. Q.; Zhang, R. R.; Gao, R. J.; Aleem, F. E.; Yuan, X. Y.; Zhang, X. W.; Zou, J. J. Iron phosphide encapsulated in P-doped graphitic carbon as efficient and stable electrocatalyst for hydrogen and oxygen evolution reactions. Nanoscale2018, 10, 21327–21334.CrossRefGoogle Scholar
  29. [29]
    Jia, X. D.; Zhao, Y. F.; Chen, G. B.; Shang, L.; Shi, R.; Kang, X. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst. Adv. Energy Mater.2016, 6, 1502585.CrossRefGoogle Scholar
  30. [30]
    Chen, P. Z.; Xu, K.; Fang, Z. W.; Tong, Y.; Wu, J. C.; Lu, X. L.; Peng, X.; Ding, H.; Wu, C. Z.; Xie, Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed.2015, 54, 14710–14714.CrossRefGoogle Scholar
  31. [31]
    Lv, Z.; Tahir, M.; Lang, X. W.; Yuan, G.; Pan, L.; Zhang, X. W.; Zou, J. J. Well-dispersed molybdenum nitrides on a nitrogen-doped carbon matrix for highly efficient hydrogen evolution in alkaline media. J. Mater. Chem. A2017, 5, 20932–20937.CrossRefGoogle Scholar
  32. [32]
    Jia, J.; Xiong, T. L.; Zhao, L. L.; Wang, F. L.; Liu, H.; Hu, R. Z.; Zhou, J.; Zhou, W. J.; Chen, S. W. Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano2017, 11, 12509–12518.CrossRefGoogle Scholar
  33. [33]
    Wang, J. B.; Chen, W. L.; Wang, T.; Bate, N.; Wang, C. L.; Wang, E. B. A strategy for highly dispersed Mo2C/MoN hybrid nitrogen-doped graphene via ion-exchange resin synthesis for efficient electrocatalytic hydrogen reduction. Nano Res.2018, 11, 4535–4548.CrossRefGoogle Scholar
  34. [34]
    Chen, Y. L.; Yu, G. T.; Chen, W.; Liu, Y. P.; Li, G. D.; Zhu, P. W.; Tao, Q.; Li, Q. J.; Liu, J. W.; Shen, X. P. et al. Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction. J. Am. Chem. Soc.2017, 139, 12370–12373.CrossRefGoogle Scholar
  35. [35]
    Li, H.; Wen, P.; Li, Q.; Dun, C. C.; Xing, J. H.; Lu, C.; Adhikari, S.; Jiang, L.; Carroll, D. L.; Geyer, S. M. Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting. Adv. Energy Mater.2017, 7, 1700513.CrossRefGoogle Scholar
  36. [36]
    Gupta, S.; Patel, N.; Miotello, A.; Kothari, D. C. Cobalt-boride: An efficient and robust electrocatalyst for hydrogen evolution reaction. J. Power Sources2015, 279, 620–625.CrossRefGoogle Scholar
  37. [37]
    Lu, X. Y.; Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun.2015, 6, 6616.CrossRefGoogle Scholar
  38. [38]
    Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z. Y.; Somsen, C.; Muhler, M.; Schuhmann, W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater.2016, 6, 1502313.CrossRefGoogle Scholar
  39. [39]
    Liang, Y. H.; Sun, X. P.; Asiri, A. M.; He, Y. Q. Amorphous Ni-B alloy nanoparticle film on Ni foam: Rapid alternately dipping deposition for efficient overall water splitting. Nanotechnology2016, 27, 12LT01.Google Scholar
  40. [40]
    Liang, H. F.; Gandi, A. N.; Xia, C.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlögl, U.; Alshareef, H. N. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett.2017, 2, 1035–1042.CrossRefGoogle Scholar
  41. [41]
    Sun, H. M.; Xu, X. B.; Yan, Z. H.; Chen, X.; Jiao, L. F.; Cheng, F. Y.; Chen, J. Superhydrophilic amorphous Co-B-P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. J. Mater. Chem. A2018, 6, 22062–22069.CrossRefGoogle Scholar
  42. [42]
    Yang, Y.; Fei, H. L.; Ruan, G. D.; Xiang, C. S.; Tour, J. M. Efficient electrocatalytic oxygen evolution on amorphous nickel-cobalt binary oxide nanoporous layers. ACS Nano2014, 8, 9518–9523.CrossRefGoogle Scholar
  43. [43]
    Nai, J. W.; Yin, H. J.; You, T. T.; Zheng, L. R.; Zhang, J.; Wang, P. X.; Jin, Z.; Tian, Y.; Liu, J. Z.; Tang, Z. Y. et al. Efficient electrocatalytic water oxidation by using amorphous Ni-Co double hydroxides nanocages. Adv. Energy Mater.2015, 5, 1401880.CrossRefGoogle Scholar
  44. [44]
    Wei, L.; Karahan, H. E.; Zhai, S. L.; Liu, H. W.; Chen, X. C.; Zhou, Z.; Lei, Y. J.; Liu, Z. W.; Chen, Y. Amorphous bimetallic oxidegraphene hybrids as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Adv. Mater.2017, 29, 1701410.CrossRefGoogle Scholar
  45. [45]
    Xu, L.; Zhang, F. T.; Chen, J. H.; Fu, X. Z.; Sun, R.; Wong, C. P. Amorphous NiFe nanotube arrays bifunctional electrocatalysts for efficient electrochemical overall water splitting. ACS Appl. Energy Mater.2018, 1, 1210–1217.CrossRefGoogle Scholar
  46. [46]
    Huang, H. W.; Yu, C.; Zhao, C. T.; Han, X. T.; Yang, J.; Liu, Z. B.; Li, S. F.; Zhang, M. D.; Qiu, J. S. Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting. Nano Energy2017, 34, 472–480.CrossRefGoogle Scholar
  47. [47]
    Fang, Z. W.; Peng, L. L.; Qian, Y. M.; Zhang, X.; Xie, Y. J.; Cha, J. J.; Yu, G. H. Dual tuning of Ni-Co-A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J. Am. Chem. Soc.2018, 140, 5241–5247.CrossRefGoogle Scholar
  48. [48]
    Zhang, X.; Zhang, X.; Xu, H. M.; Wu, Z. S.; Wang, H. L.; Liang, Y. Y. Iron-doped cobalt monophosphide nanosheet/carbon nanotube hybrids as active and stable electrocatalysts for water splitting. Adv. Funct. Mater.2017, 27, 1606635.CrossRefGoogle Scholar
  49. [49]
    Huang, L. L.; Chen, D. W.; Luo, G.; Lu, Y. R.; Chen, C.; Zou, Y. Q.; Dong, C. L.; Li, Y. F.; Wang, S. Y. Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting. Adv. Mater.2019, 31, 1901439.CrossRefGoogle Scholar
  50. [50]
    Liu, G.; He, D. Y.; Yao, R.; Zhao, Y.; Li, J. P. Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting. Nano Res.2018, 11, 1664–1675.CrossRefGoogle Scholar
  51. [51]
    Xu, W. C.; Zhu, S. L.; Liang, Y. Q.; Cui, Z. D.; Yang, X. J.; Inoue, A. A nanoporous metal phosphide catalyst for bifunctional water splitting. J. Mater. Chem. A2018, 6, 5574–5579.CrossRefGoogle Scholar
  52. [52]
    Li, Y. J.; Huang, B. L.; Sun, Y. J.; Luo, M. C.; Yang, Y.; Qin, Y. N.; Wang, L.; Li, C. J.; Lv, F.; Zhang, W. Y. et al. Multimetal borides nanochains as efficient electrocatalysts for overall water splitting. Small2019, 15, 1804212.CrossRefGoogle Scholar
  53. [53]
    Masa, J.; Sinev, I.; Mistry, H.; Ventosa, E.; de la Mata, M.; Arbiol, J.; Muhler, M.; Roldan Cuenya, B.; Schuhmann, W. Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution. Adv. Energy Mater.2017, 7, 1700381.CrossRefGoogle Scholar
  54. [54]
    Nsanzimana, J. M. V.; Peng, Y. C.; Xu, Y. Y.; Thia, L.; Wang, C.; Xia, B. Y.; Wang, X. An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv. Energy Mater.2018, 8, 1701475.CrossRefGoogle Scholar
  55. [55]
    Nsanzimana, J. M. V.; Reddu, V.; Peng, Y.; Huang, Z. F.; Wang, C.; Wang, X. Ultrathin amorphous iron-nickel boride nanosheets for highly efficient electrocatalytic oxygen production. Chem. Euro. J.2018, 24, 18502–18511.CrossRefGoogle Scholar
  56. [56]
    Gupta, S.; Patel, N.; Fernandes, R.; Kadrekar, R.; Dashora, A.; Yadav, A. K.; Bhattacharyya, D.; Jha, S. N.; Miotello, A.; Kothari, D. C. Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl. Catal. B: Environ.2016, 192, 126–133.CrossRefGoogle Scholar
  57. [57]
    Kim, J.; Kim, H.; Kim, S. K.; Ahn, S. H. Electrodeposited amorphous Co-P-B ternary catalyst for hydrogen evolution reaction. J. Mater. Chem. A2018, 6, 6282–6288.CrossRefGoogle Scholar
  58. [58]
    Jiang, N.; You, B.; Sheng, M. L.; Sun, Y. J. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem., Int. Ed.2015, 54, 6251–6254.CrossRefGoogle Scholar
  59. [59]
    Zhang, P. L.; Wang, M.; Yang, Y.; Yao, T. Y.; Han, H. X.; Sun, L. C. Electroless plated Ni-Bx films as highly active electrocatalysts for hydrogen production from water over a wide pH range. Nano Energy2016, 19, 98–107.CrossRefGoogle Scholar
  60. [60]
    Liu, Q.; Tian, J. Q.; Cui, W.; Jiang, P.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem., Int. Ed.2014, 53, 6710–6714.CrossRefGoogle Scholar
  61. [61]
    Gupta, S.; Patel, N.; Fernandes, R.; Hanchate, S.; Miotello, A.; Kothari, D. C. Co-Mo-B nanoparticles as a non-precious and efficient bifunctional electrocatalyst for hydrogen and oxygen evolution. Electrochim. Acta2017, 232, 64–71.CrossRefGoogle Scholar
  62. [62]
    Xu, M.; Han, L.; Han, Y. J.; Yu, Y.; Zhai, J. F.; Dong, S. J. Porous CoP concave polyhedron electrocatalysts synthesized from metal-organic frameworks with enhanced electrochemical properties for hydrogen evolution. J. Mater. Chem. A2015, 3, 21471–21477.CrossRefGoogle Scholar
  63. [63]
    Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J. G.; Guan, M. Y.; Lin, M. C.; Zhang, B.; Hu, Y. F.; Wang, D. Y.; Yang, J. et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun.2014, 5, 4695.CrossRefGoogle Scholar
  64. [64]
    Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev.2014, 43, 6555–6569.CrossRefGoogle Scholar
  65. [65]
    Jiang, J.; Wang, M.; Yan, W. S.; Liu, X. F.; Liu, J. X.; Yang, J. L.; Sun, L. C. Highly active and durable electrocatalytic water oxidation by a NiB0.45/NiOx core-shell heterostructured nanoparticulate film. Nano Energy2017, 38, 175–184.CrossRefGoogle Scholar
  66. [66]
    Pan, Y.; Liu, Y. R.; Zhao, J. C.; Yang, K.; Liang, J. L.; Liu, D. D.; Hu, W. H.; Liu, D. P.; Liu, Y. Q.; Liu, C. G. Monodispersed nickel phosphide nanocrystals with different phases: Synthesis, characterization and electrocatalytic properties for hydrogen evolution. J. Mater. Chem. A2015, 3, 1656–1665.CrossRefGoogle Scholar
  67. [67]
    Xu, N.; Cao, G. X.; Chen, Z. J.; Kang, Q.; Dai, H. B.; Wang, P. Cobalt nickel boride as an active electrocatalyst for water splitting. J. Mater. Chem. A2017, 5, 12379–12384.CrossRefGoogle Scholar
  68. [68]
    Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc.2014, 136, 6744–6753.CrossRefGoogle Scholar
  69. [69]
    Tahir, M.; Pan, L.; Zhang, R. R.; Wang, Y. C.; Shen, G. Q.; Aslam, I.; Qadeer, M. A.; Mahmood, N.; Xu, W.; Wang, L. et al. High-valencestate NiO/Co3O4 nanoparticles on nitrogen-doped carbon for oxygen evolution at low overpotential. ACS Energy Lett.2017, 2, 2177–2182.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations