Revealing the anion intercalation behavior and surface evolution of graphite in dual-ion batteries via in situ AFM

  • Kai Yang
  • Langlang Jia
  • Xinhua Liu
  • Zijian Wang
  • Yan Wang
  • Yiwei Li
  • Haibiao Chen
  • Billy Wu
  • Luyi YangEmail author
  • Feng PanEmail author
Research Article


Graphite as a positive electrode material of dual ion batteries (DIBs) has attracted tremendous attentions for its advantages including low lost, high working voltage and high energy density. However, very few literatures regarding to the real-time observation of anion intercalation behavior and surface evolution of graphite in DIBs have been reported. Herein, we use in situ atomic force microscope (AFM) to directly observe the intercalation/de-intercalation processes of PF6 in graphite in real time. First, by measuring the change in the distance between graphene layers during intercalation, we found that PF6 intercalates in one of every three graphite layers and the intercalation speed is measured to be 2 µm·min−1. Second, graphite will wrinkle and suffer structural damages at high voltages, along with severe electrolyte decomposition on the surface. These findings provide useful information for further optimizing the capacity and the stability of graphite anode in DIBs.


dual ion battery in situ atomic force microscope (AFM) graphite positive electrode hierarchical anion intercalation structure evolution surface reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was financially supported by Soft Science Research Project of Guangdong Province (No. 2017B030301013) and the Shenzhen Science and Technology Research (Nos. JCYJ20170818085823773 and ZDSYS201707281026184).

Supplementary material

12274_2020_2623_MOESM1_ESM.pdf (3.4 mb)
Revealing the anion intercalation behavior and surface evolution of graphite in dual-ion batteries via in situ AFM


  1. [1]
    Wang, M.; Tang, Y. B. A review on the features and progress of dual-ion batteries. Adv. Energy Mater.2018, 8, 1703320.CrossRefGoogle Scholar
  2. [2]
    Lu, J.; Chen, Z. W.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev.2018, 1, 35–53.CrossRefGoogle Scholar
  3. [3]
    Zhou, Z. L.; Li, N.; Yang, Y. Z.; Chen, H. S.; Jiao, S. Q.; Song, W. L.; Fang, D. N. Ultra-lightweight 3D carbon current collectors: Constructing all-carbon electrodes for stable and high energy density dual-ion batteries. Adv. Energy Mater.2018, 8, 1801439.CrossRefGoogle Scholar
  4. [4]
    Placke, T.; Heckmann, A.; Schmuch, R.; Meister, P.; Beltrop, K.; Winter, M. Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule2018, 2, 2528–2550.CrossRefGoogle Scholar
  5. [5]
    Gao, J. C.; Tian, S. F.; Qi, L.; Wang, H. Y. Intercalation manners of perchlorate anion into graphite electrode from organic solutions. Electrochim. Acta2015, 176, 22–27.CrossRefGoogle Scholar
  6. [6]
    Kravchyk, K. V.; Bhauriyal, P.; Piveteau, L.; Guntlin, C. P.; Pathak, B.; Kovalenko, M. V. High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. Nat. Commun.2018, 9, 4469.CrossRefGoogle Scholar
  7. [7]
    Qi, X.; Blizanac, B.; DuPasquier, A.; Meister, P.; Placke, T.; Oljaca, M.; Li, J.; Winter, M. Investigation of PF6 and TFSI anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries. Phys. Chem. Chem. Phys.2014, 16, 25306–25313.CrossRefGoogle Scholar
  8. [8]
    Wang, S.; Jiao, S. Q.; Tian, D. H.; Chen, H. S.; Jiao, H. D.; Tu, J. G.; Liu, Y. J.; Fang, D. N. A novel ultrafast rechargeable multi-ions battery. Adv. Mater.2017, 29, 1606349.CrossRefGoogle Scholar
  9. [9]
    Jiao, S. Q.; Lei, H. P.; Tu, J. G.; Zhu, J.; Wang, J. X.; Mao, X. H. An industrialized prototype of the rechargeable Al/AlCl3-[EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene. Carbon2016, 109, 276–281.CrossRefGoogle Scholar
  10. [10]
    Sun, H. B.; Wang, W.; Yu, Z. J.; Yuan, Y.; Wang, S.; Jiao, S. Q. A new aluminium-ion battery with high voltage, high safety and low cost. Chem. Commun.2015, 51, 11892–11895.CrossRefGoogle Scholar
  11. [11]
    Yu, Z. J.; Jiao, S. Q.; Li, S. J.; Chen, X. D.; Song, W. L.; Teng, T.; Tu, J. G.; Chen, H. S.; Zhang, G. H.; Fang, D. N. Flexible stable solid-state Al-ion batteries. Adv. Funct. Mater.2019, 29, 1806799.CrossRefGoogle Scholar
  12. [12]
    Zhang, X. F.; Jiao, S. Q.; Tu, J. G.; Song, W. L.; Xiao, X.; Li, S. J.; Wang, M. Y.; Lei, H. P.; Tian, D. H.; Chen, H. S. et al. Rechargeable ultrahigh-capacity tellurium-aluminum batteries. Energy Environ. Sci.2019, 12, 1918–1927.CrossRefGoogle Scholar
  13. [13]
    Placke, T.; Schmuelling, G.; Kloepsch, R.; Meister, P.; Fromm, O.; Hilbig, P.; Meyer, H. W.; Winter, M. In situ X-ray diffraction studies of cation and anion intercalation into graphitic carbons for electrochemical energy storage applications. Z. Anorg. Allg. Chem.2014, 640, 1996–2006.CrossRefGoogle Scholar
  14. [14]
    Schmuelling, G.; Placke, T.; Kloepsch, R.; Fromm, O.; Meyer, H. W.; Passerini, S.; Winter, M. X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells. J. Power Sources2013, 239, 563–571.CrossRefGoogle Scholar
  15. [15]
    Gao, J. C.; Yoshio, M.; Qi, L.; Wang, H. Y. Solvation effect on intercalation behaviour of tetrafluoroborate into graphite electrode. J. Power Sources2015, 278, 452–457.CrossRefGoogle Scholar
  16. [16]
    Li, N.; Xin, Y. D.; Chen, H. S.; Jiao, S. Q.; Jiang, H. Q.; Song, W. L.; Fang, D. N. Thickness evolution of graphite-based cathodes in the dual ion batteries via in operando optical observation. J. Energy Chem.2019, 29, 122–128.CrossRefGoogle Scholar
  17. [17]
    Cresce, A. V.; Russell, S. M.; Baker, D. R.; Gaskell, K. J.; Xu, K. In situ and quantitative characterization of solid electrolyte interphases. Nano Lett.2014, 14, 1405–1412.CrossRefGoogle Scholar
  18. [18]
    Liu, T. C.; Lin, L. P.; Bi, X. X.; Tian, L. L.; Yang, K.; Liu, J. J.; Li, M. F.; Chen, Z. H.; Lu, J.; Amine, K. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol.2019, 14, 50–56.CrossRefGoogle Scholar
  19. [19]
    Lacey, S. D.; Wan, J. Y.; von Wald Cresce, A.; Russell, S. M.; Dai, J. Q.; Bao, W. Z.; Xu, K.; Hu, L. B. Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. Nano Lett.2015, 15, 1018–1024.CrossRefGoogle Scholar
  20. [20]
    Liu, C.; Ye, S. In situ Atomic Force Microscopy (AFM) study of oxygen reduction reaction on a gold electrode surface in a dimethyl sulfoxide (DMSO)-based electrolyte solution. J. Phys. Chem. C2016, 120, 25246–25255.CrossRefGoogle Scholar
  21. [21]
    Liu, X. R.; Wang, L.; Wan, L. J.; Wang, D. In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide. ACS Appl. Mater. Interfaces2015, 7, 9573–9580.CrossRefGoogle Scholar
  22. [22]
    Alliata, D.; Häring, P.; Haas, O.; Kötz, R.; Siegenthaler, H. Anion intercalation into highly oriented pyrolytic graphite studied by electrochemical atomic force microscopy. Electrochem. Commun.1999, 1, 5–9.CrossRefGoogle Scholar
  23. [23]
    Alliata, D.; Kötz, R.; Haas, O.; Siegenthaler, H. In situ AFM study of interlayer spacing during anion intercalation into HOPG in aqueous electrolyte. Langmuir1999, 15, 8483–8489.CrossRefGoogle Scholar
  24. [24]
    Goss, C. A.; Brumfield, J. C.; Irene, E. A.; Murray, R. W. Imaging the incipient electrochemical oxidation of highly oriented pyrolytic graphite. Anal. Chem.1993, 65, 1378–1389.CrossRefGoogle Scholar
  25. [25]
    Noel, M.; Santhanam, R. Electrochemistry of graphite intercalation compounds. J. Power Sources1998, 72, 53–65.CrossRefGoogle Scholar
  26. [26]
    Ishihara, T.; Yokoyama, Y.; Kozono, F.; Hayashi, H. Intercalation of PF6 anion into graphitic carbon with nano pore for dual carbon cell with high capacity. J. Power Sources2011, 196, 6956–6959.CrossRefGoogle Scholar
  27. [27]
    Seel, J. A.; Dahn, J. R. Electrochemical intercalation of PF6 into graphite. J. Electrochem. Soc.2000, 147, 892–898.CrossRefGoogle Scholar
  28. [28]
    Eshetu, G. G.; Diemant, T.; Grugeon, S.; Behm, R. J.; Laruelle, S.; Armand, M.; Passerini, S. In-depth interfacial chemistry and reactivity focused investigation of lithium-imide-and lithium-imidazole-based electrolytes. ACS Appl. Mater. Interfaces2016, 8, 16087–16100.CrossRefGoogle Scholar
  29. [29]
    Märkle, W.; Tran, N.; Goers, D.; Spahr, M. E.; Novák, P. The influence of electrolyte and graphite type on the PF6 intercalation behaviour at high potentials. Carbon2009, 47, 2727–2732.CrossRefGoogle Scholar
  30. [30]
    Choo, H. S.; Kinumoto, T.; Jeong, S. K.; Iriyama, Y.; Abe, T.; Ogumi, Z. Mechanism for electrochemical oxidation of highly oriented pyrolytic graphite in sulfuric acid solution. J. Electrochem. Soc.2007, 154, B1017–B1023.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Kai Yang
    • 1
  • Langlang Jia
    • 1
  • Xinhua Liu
    • 2
  • Zijian Wang
    • 1
  • Yan Wang
    • 1
  • Yiwei Li
    • 1
  • Haibiao Chen
    • 1
  • Billy Wu
    • 2
  • Luyi Yang
    • 1
    Email author
  • Feng Pan
    • 1
    Email author
  1. 1.School of Advanced MaterialsPeking University Shenzhen Graduate SchoolShenzhenChina
  2. 2.Dyson School of Design EngineeringImperial College LondonLondonUK

Personalised recommendations