Advertisement

Highly effective H2/D2 separation in a stable Cu-based metal-organic framework

  • Yanan Si
  • Xiang HeEmail author
  • Jie Jiang
  • Zhiming Duan
  • Wenjing Wang
  • Daqiang YuanEmail author
Research Article

Abstract

A three-dimensional copper metal—organic framework with the rare chabazite (CHA) topology namely FJI-Y11 has been constructed with flexibly carboxylic ligand 5,5′-[(1,4-phenylenebis(methylene))bis(oxy)]diisophthalic acid (H4L). FJI-Y11 exhibits high water stability with the pH range from 2 to 12 at temperature as high as 373 K. Importantly, FJI-Y11 also shows high efficiency of hydrogen isotope separation using dynamic column breakthrough experiments under atmospheric pressure at 77 K. Attributed to its excellent structural stability, FJI-Y11 possesses good regenerated performance and maintains high separation efficiency after three cycles of breakthrough experiments.

Keywords

metal—organic framework (MOFs) hydrogen isotope separation breakthrough experiments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the Strategic Priority Research Program of CAS (No. XDB20000000), the Key Research Program of Frontier Sciences, CAS (No. QYZDB-SSW-SLH019), and the Natural Nature Science Foundation of China (Nos. 21771177, 51603206 and 21203117).

Supplementary material

12274_2019_2571_MOESM1_ESM.cif (1.2 mb)
Supplementary material, approximately 1.23 KB.
12274_2019_2571_MOESM2_ESM.pdf (3.8 mb)
Highly effective H2/D2 separation in a stable Cu-based metal-organic framework
12274_2019_2571_MOESM3_ESM.pdf (384 kb)
checkCIF/PLATON report

References

  1. [1]
    Beenakker, J. J. M.; Borman, V. D.; Krylov, S. Y. Molecular transport in subnanometer pores: Zero-point energy, reduced dimensionality and quantum sieving. Chem. Phys. Lett.1995, 232, 379–382.CrossRefGoogle Scholar
  2. [2]
    Basmadjian, D. Adsorption equilibria of hydrogen, deuterium, and their mixtures. Part I. Can. J. Chem.1960, 38, 141–148.CrossRefGoogle Scholar
  3. [3]
    Johnston, H. L.; Long, E. A. Heat capacity curves of the simpler gases. vi. Rotational heat capacity curves of molecular deuterium and of deuterium hydride. The equilibrium between the ortho and para forms of deuterium. Free energy, total energy, entropy, heat capacity and dissociation of H2H2 and of H1H2, to 3000 °K. J. Chem. Phys.1934, 2, 389–395.CrossRefGoogle Scholar
  4. [4]
    Yaris, R.; Sams, J. R. Jr. Quantum treatment of the physical adsorption of isotopic species. J. Chem. Phys.1962, 37, 571–576.CrossRefGoogle Scholar
  5. [5]
    Povinec, P. P.; Bokuniewicz, H.; Burnett, W. C.; Cable, J.; Charette, M.; Comanducci, J. F.; Kontar, E. A.; Moore, W. S.; Oberdorfer, J. A.; de Oliveira, J. et al. Isotope tracing of submarine groundwater discharge offshore Ubatuba, Brazil: Results of the IAEA-UNESCO SGD project. J. Environ. Radioact.2008, 99, 1596–1610.CrossRefGoogle Scholar
  6. [6]
    Keppler, F.; Hamilton, J. T. G.; McRoberts, W. C.; Vigano, I.; Braß, M.; Röckmann, T. Methoxyl groups of plant pectin as a precursor of atmospheric methane: Evidence from deuterium labelling studies. New Phytol.2008, 178, 808–814.CrossRefGoogle Scholar
  7. [7]
    Zaccai, G. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science2000, 288, 1604–1607.CrossRefGoogle Scholar
  8. [8]
    Büldt, G.; Gally, H. U.; Seelig, A.; Seelig, J.; Zaccai, G. Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature1978, 271, 182–184.CrossRefGoogle Scholar
  9. [9]
    Shi, C. W.; Fricke, P.; Lin, L.; Chevelkov, V.; Wegstroth, M.; Giller, K.; Becker, S.; Thanbichler, M.; Lange, A. Atomic-resolution structure of cytoskeletal bactofilin by solid-state NMR. Sci. Adv.2015, 1, e1501087.CrossRefGoogle Scholar
  10. [10]
    Tanaka, H.; Noguchi, D.; Yuzawa, A.; Kodaira, T.; Kanoh, H.; Kaneko, K. Quantum effects on hydrogen isotopes adsorption in nanopores. J. Low Temp. Phys.2009, 157, 352–373.CrossRefGoogle Scholar
  11. [11]
    Salazar, J. M.; Lectez, S.; Gauvin, C.; Macaud, M.; Bellat, J. P.; Weber, G.; Bezverkhyy, I.; Simon, J. M. Adsorption of hydrogen isotopes in the zeolite NaX: Experiments and simulations. Int. J. Hydrogen Energy2017, 42, 13099–13110.CrossRefGoogle Scholar
  12. [12]
    Physick, A. J. W.; Wales, D. J.; Owens, S. H. R.; Shang, J.; Webley, P. A.; Mays, T. J.; Ting, V. P. Novel low energy hydrogen-deuterium isotope breakthrough separation using a trapdoor zeolite. Chem. Eng. J.2016, 288, 161–168.CrossRefGoogle Scholar
  13. [13]
    Zhao, X. B.; Xiao, B.; Fletcher, A. J.; Thomas, K. M. Hydrogen adsorption on functionalized nanoporous activated carbons. J. Phys. Chem. B2005, 109, 8880–8888.CrossRefGoogle Scholar
  14. [14]
    Kumar, A. V. A.; Bhatia, S. K. Quantum effect induced reverse kinetic molecular sieving in microporous materials. Phys. Rev. Lett.2005, 95, 245901.CrossRefGoogle Scholar
  15. [15]
    Tanaka, H.; Kanoh, H.; Yudasaka, M.; Iijima, S.; Kaneko, K. Quantum effects on hydrogen isotope adsorption on single-wall carbon nanohorns. J. Am. Chem. Soc.2005, 127, 7511–7516.CrossRefGoogle Scholar
  16. [16]
    Stéphanie-Victoire, F.; Goulay, A. M.; de Lara, E. C. Adsorption and coadsorption of molecular hydrogen isotopes in zeolites. 1. Isotherms of H2, HD, and D2 in NaA by thermomicrogravimetry. Langmuir1998, 14, 7255–7259.CrossRefGoogle Scholar
  17. [17]
    Cendagorta, J. R.; Powers, A.; Hele, T. J. H.; Marsalek, O.; Bačić, Z.; Tuckerman, M. E. Competing quantum effects in the free energy profiles and diffusion rates of hydrogen and deuterium molecules through clathrate hydrates. Phys. Chem. Chem. Phys.2016, 18, 32169–32177.CrossRefGoogle Scholar
  18. [18]
    Chu, X. Z.; Cheng, Z. P.; Xiang, X. X.; Xu, J. M.; Zhao, Y. J.; Zhang, W. G.; Lv, J. S.; Zhou, Y. P.; Zhou, L.; Moon, D. K. et al. Separation dynamics of hydrogen isotope gas in mesoporous and microporous adsorbent beds at 77 K: SBA-15 and zeolites 5A, Y, 10X. Int. J. Hydrogen Energy2014, 39, 4437–4446.CrossRefGoogle Scholar
  19. [19]
    Oh, H.; Kalidindi, S. B.; Um, Y.; Bureekaew, S.; Schmid, R.; Fischer, R. A.; Hirscher, M. A cryogenically flexible covalent organic framework for efficient hydrogen isotope separation by quantum sieving. Angew. Chem., Int. Ed.2013, 52, 13219–13222.CrossRefGoogle Scholar
  20. [20]
    Krkljus, I.; Steriotis, T.; Charalambopoulou, G.; Gotzias, A.; Hirscher, M. H2/D2 adsorption and desorption studies on carbon molecular sieves with different pore structures. Carbon2013, 57, 239–247.CrossRefGoogle Scholar
  21. [21]
    Cai, J. J.; Xing, Y. L.; Zhao, X. B. Quantum sieving: Feasibility and challenges for the separation of hydrogen isotopes in nanoporous materials. RSC Adv.2012, 2, 8579–8586.CrossRefGoogle Scholar
  22. [22]
    Nguyen, T. X.; Jobic, H.; Bhatia, S. K. Microscopic observation of kinetic molecular sieving of hydrogen isotopes in a nanoporous material. Phys. Rev. Lett.2010, 105, 085901.CrossRefGoogle Scholar
  23. [23]
    Kotoh, K.; Takashima, S.; Sakamoto, T.; Tsuge, T. Multi-component behaviors of hydrogen isotopes adsorbed on synthetic zeolites 4A and 5A at 77.4 K and 87.3 K. Fusion Eng. Des.2010, 85, 1928–1934.CrossRefGoogle Scholar
  24. [24]
    Garberoglio, G. Quantum sieving in organic frameworks. Chem. Phys. Lett.2009, 467, 270–275.CrossRefGoogle Scholar
  25. [25]
    Panella, B.; Hirscher, M.; Ludescher, B. Low-temperature thermal-desorption mass spectroscopy applied to investigate the hydrogen adsorption on porous materials. Micropor. Mesopor. Mater.2007, 103, 230–234.CrossRefGoogle Scholar
  26. [26]
    Zhao, X. B.; Villar-Rodil, S.; Fletcher, A. J.; Thomas, K. M. Kinetic isotope effect for H2 and D2 quantum molecular sieving in adsorption/desorption on porous carbon materials. J. Phys. Chem. B2006, 110, 9947–9955.CrossRefGoogle Scholar
  27. [27]
    Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev.2012, 112, 673–674.CrossRefGoogle Scholar
  28. [28]
    Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W. Hydrogen storage in metal-organic frameworks. Chem. Rev.2012, 112, 782–835.CrossRefGoogle Scholar
  29. [29]
    Kapelewski, M. T.; Runcevski, T.; Tarver, J. D.; Jiang, H. Z. H.; Hurst, K. E.; Parilla, P. A.; Ayala, A.; Gennett, T.; FitzGerald, S. A.; Brown, C. M. et al. Record high hydrogen storage capacity in the metal-organic framework Ni2(m-dobdc) at near-ambient temperatures. Chem. Mater.2018, 30, 8179–8189.CrossRefGoogle Scholar
  30. [30]
    Noguchi, D.; Tanaka, H.; Kondo, A.; Kajiro, H.; Noguchi, H.; Ohba, T.; Kanoh, H.; Kaneko, K. Quantum sieving effect of three-dimensional Cu-based organic framework for H2 and D2. J. Am. Chem. Soc.2008, 130, 6367–6372.CrossRefGoogle Scholar
  31. [31]
    Teufel, J.; Oh, H.; Hirscher, M.; Wahiduzzaman, M.; Zhechkov, L.; Kuc, A.; Heine, T.; Denysenko, D.; Volkmer, D. MFU-4—A metal-organic framework for highly effective H2/D2 separation. Adv. Mater.2013, 25, 635–639.CrossRefGoogle Scholar
  32. [32]
    Paschke, B.; Denysenko, D.; Bredenkötter, B.; Sastre, G.; Wixforth, A.; Volkmer, D. Dynamic studies on kinetic H2/D2 quantum sieving in a narrow pore metal-organic framework grown on a sensor chip. Chem.—Eur. J.2019, 25, 10803–10807.CrossRefGoogle Scholar
  33. [33]
    Weinrauch, I.; Savchenko, I.; Denysenko, D.; Souliou, S. M.; Kim, H. H.; Le Tacon, M.; Daemen, L. L.; Cheng, Y.; Mavrandonakis, A.; Ramirez-Cuesta, A. J. et al. Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites. Nat. Commun.2017, 8, 14496.CrossRefGoogle Scholar
  34. [34]
    Chen, B. L.; Zhao, X. B.; Putkham, A.; Hong, K. L.; Lobkovsky, E. B.; Hurtado, E. J.; Fletcher, A. J.; Thomas, K. M. Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material. J. Am. Chem. Soc.2008, 130, 6411–6423.CrossRefGoogle Scholar
  35. [35]
    Kim, J. Y.; Balderas-Xicohténcatl, R.; Zhang, L. D.; Kang, S. G.; Hirscher, M.; Oh, H.; Moon, H. R. Exploiting diffusion barrier and chemical affinity of metal-organic frameworks for efficient hydrogen isotope separation. J. Am. Chem. Soc.2017, 139, 15135–15141.CrossRefGoogle Scholar
  36. [36]
    FitzGerald, S. A.; Pierce, C. J.; Rowsell, J. L. C.; Bloch, E. D.; Mason, J. A. Highly selective quantum sieving of D2 from H2 by a metal-organic framework as determined by gas manometry and infrared spectroscopy. J. Am. Chem. Soc.2013, 135, 9458–9464.CrossRefGoogle Scholar
  37. [37]
    FitzGerald, S. A.; Burkholder, B.; Friedman, M.; Hopkins, J. B.; Pierce, C. J.; Schloss, J. M.; Thompson, B.; Rowsell, J. L. C. Metal-specific interactions of H2 adsorbed within isostructural metal-organic frameworks. J. Am. Chem. Soc.2011, 133, 20310–20318.CrossRefGoogle Scholar
  38. [38]
    FitzGerald, S. A.; Hopkins, J.; Burkholder, B.; Friedman, M.; Rowsell, J. L. C. Quantum dynamics of adsorbed normal- and para-H2, HD, and D2 in the microporous framework MOF-74 analyzed using infrared spectroscopy. Phys. Rev. B2010, 81, 104305.CrossRefGoogle Scholar
  39. [39]
    Oh, H.; Hirscher, M. Quantum sieving for separation of hydrogen isotopes using MOFs. Eur. J. Inorg. Chem.2016, 2016, 4278–4289.CrossRefGoogle Scholar
  40. [40]
    Oh, H.; Park, K. S.; Kalidindi, S. B.; Fischer, R. A.; Hirscher, M. Quantum cryo-sieving for hydrogen isotope separation in microporous frameworks: An experimental study on the correlation between effective quantum sieving and pore size. J. Mater. Chem. A2013, 1, 3244–3248.CrossRefGoogle Scholar
  41. [41]
    Liu, M.; Zhang, L. D.; Little, M. A.; Kapil, V.; Ceriotti, M.; Yang, S. Y.; Ding, L. F.; Holden, D. L.; Balderas-Xicohténcatl, R.; He, D. L. et al. Barely porous organic cages for hydrogen isotope separation. Science2019, 366, 613–620.CrossRefGoogle Scholar
  42. [42]
    Oh, H.; Savchenko, I.; Mavrandonakis, A.; Heine, T.; Hirscher, M. Highly effective hydrogen isotope separation in nanoporous metal-organic frameworks with open metal sites: Direct measurement and theoretical analysis. ACS Nano2014, 8, 761–770.CrossRefGoogle Scholar
  43. [43]
    Wang, H.; Dong, X. L.; Lin, J. Z.; Teat, S. J.; Jensen, S.; Cure, J.; Alexandrov, E. V.; Xia, Q. B.; Tan, K.; Wang, Q. N. et al. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nat. Commun.2018, 9, 1745.Google Scholar
  44. [44]
    Hu, Z. G.; Peng, Y. W.; Kang, Z. X.; Qian, Y. H.; Zhao, D. A Modulated Hydrothermal (MHT) approach for the facile synthesis of UiO-66-Type MOFs. Inorg. Chem.2015, 54, 4862–4868.CrossRefGoogle Scholar
  45. [45]
    Cooper, L.; Guillou, N.; Martineau, C.; Elkaim, E.; Taulelle, F.; Serre, C.; Devic, T. ZrIV coordination polymers based on a naturally occurring phenolic derivative. Eur. J. Inorg. Chem.2014, 2014, 6281–6289.CrossRefGoogle Scholar
  46. [46]
    Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science2005, 309, 2040–2042.CrossRefGoogle Scholar
  47. [47]
    Nguyen, N. T. T.; Furukawa, H.; Gándara, F.; Nguyen, H. T.; Cordova, K. E.; Yaghi, O. M. Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks. Angew. Chem., Int. Ed.2014, 53, 10645–10648.CrossRefGoogle Scholar
  48. [48]
    Hayashi, H.; Côté, A. P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. Zeolite a imidazolate frameworks. Nat. Mater.2007, 6, 501–506.Google Scholar
  49. [49]
    Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA2006, 103, 10186–10191.CrossRefGoogle Scholar
  50. [50]
    Pan, Y. J.; Ford, W. T. Dendrimers with alternating amine and ether generations. J. Org. Chem.1999, 64, 8588–8593.CrossRefGoogle Scholar
  51. [51]
    Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. RASPA: Molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simulat.2016, 42, 81–101.CrossRefGoogle Scholar
  52. [52]
    Mayo, S. L.; Olafson, B. D.; Goddard, W. A. DREIDING: A generic force field for molecular simulations. J. Phys. Chem.1990, 94, 8897–8909.CrossRefGoogle Scholar
  53. [53]
    Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc.1992, 114, 10024–10035.CrossRefGoogle Scholar
  54. [54]
    Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micropor. Mesopor. Mater.2012, 149, 134–141.CrossRefGoogle Scholar
  55. [55]
    Martin, R. L.; Smit, B.; Haranczyk, M. Addressing challenges of identifying geometrically diverse sets of crystalline porous materials. J. Chem. Inf. Model.2012, 52, 308–318.CrossRefGoogle Scholar
  56. [56]
    Spek, A. L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. C Struct. Chem.2015, 71, 9–18.CrossRefGoogle Scholar
  57. [57]
    McHugh, L. N.; McPherson, M. J.; McCormick, L. J.; Morris, S. A.; Wheatley, P. S.; Teat, S. J.; McKay, D.; Dawson, D. M.; Sansome, C. E. F.; Ashbrook, S. E. et al. Hydrolytic stability in hemilabile metal-organic frameworks. Nat. Chem.2018, 10, 1096–1102.Google Scholar
  58. [58]
    Gygi, D.; Bloch, E. D.; Mason, J. A.; Hudson, M. R.; Gonzalez, M. I.; Siegelman, R. L.; Darwish, T. A.; Queen, W. L.; Brown, C. M.; Long, J. R. Hydrogen storage in the expanded pore metal-organic frameworks M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn). Chem. Mater.2016, 28, 1128–1138.CrossRefGoogle Scholar
  59. [59]
    Kim, J. Y.; Zhang, L. D.; Balderas-Xicohténcatl, R.; Park, J.; Hirscher, M.; Moon, H. R.; Oh, H. Selective hydrogen isotope separation via breathing transition in MIL-53(Al). J. Am. Chem. Soc.2017, 139, 17743–17746.CrossRefGoogle Scholar
  60. [60]
    Zhao, Q.; Yuan, W.; Liang, J. M.; Li, J. P. Synthesis and hydrogen storage studies of metal-organic framework UiO-66. Int. J. Hydrogen Energy2013, 38, 13104–13109.CrossRefGoogle Scholar
  61. [61]
    Ren, J. W.; Langmi, H. W.; North, B. C.; Mathe, M.; Bessarabov, D. Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications. Int. J. Hydrogen Energy2014, 39, 890–895.CrossRefGoogle Scholar
  62. [62]
    Chavan, S.; Vitillo, J. G.; Gianolio, D.; Zavorotynska, O.; Civalleri, B.; Jakobsen, S.; Nilsen, M. H.; Valenzano, L.; Lamberti, C.; Lillerud, K. P. et al. H2 storage in isostructural UiO-67 and UiO-66 MOFs. Phys. Chem. Chem. Phys.2012, 14, 1614–1626.CrossRefGoogle Scholar
  63. [63]
    Zhou, M.; Wang, Q.; Zhang, L.; Liu, Y. C.; Kang, Y. Adsorption sites of hydrogen in zeolitic imidazolate frameworks. J. Phys. Chem. B2009, 113, 11049–11053.CrossRefGoogle Scholar
  64. [64]
    Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science1999, 283, 1148–1150.CrossRefGoogle Scholar
  65. [65]
    Krkljus, I.; Hirscher, M. Characterization of hydrogen/deuterium adsorption sites in nanoporous Cu-BTC by low-temperature thermal-desorption mass spectroscopy. Micropor. Mesopor. Mater.2011, 142, 725–729.CrossRefGoogle Scholar
  66. [66]
    Peterson, V. K.; Brown, C. M.; Liu, Y.; Kepert, C. J. Structural study of D2 within the trimodal pore system of a metal organic framework. J. Phys. Chem. C2011, 115, 8851–8857.CrossRefGoogle Scholar
  67. [67]
    Prestipino, C.; Regli, L.; Vitillo, J. G.; Bonino, F.; Damin, A.; Lamberti, C.; Zecchina, A.; Solari, P. L.; Kongshaug, K. O.; Bordiga, S. Local structure of framework Cu(II) in HKUST-1 metallorganic framework: Spectroscopic characterization upon activation and interaction with adsorbates. Chem. Mater.2006, 18, 1337–1346.CrossRefGoogle Scholar
  68. [68]
    Lee, J.; Li, J.; Jagiello, J. Gas sorption properties of microporous metal organic frameworks. J. Solid State Chem.2005, 178, 2527–2532.CrossRefGoogle Scholar
  69. [69]
    Rowsell, J. L. C.; Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J. Am. Chem. Soc.2006, 128, 1304–1315.CrossRefGoogle Scholar
  70. [70]
    Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. Exceptional H2 saturation uptake in microporous metal-organic frameworks. J. Am. Chem. Soc.2006, 128, 3494–3495.CrossRefGoogle Scholar
  71. [71]
    Xiao, B.; Wheatley, P. S.; Zhao, X. B.; Fletcher, A. J.; Fox, S.; Rossi, A. G.; Megson, I. L.; Bordiga, S.; Regli, L.; Thomas, K. M. et al. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework. J. Am. Chem. Soc.2007, 129, 1203–1209.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
  2. 2.Department of Chemistry, College of SciencesShanghai UniversityShanghaiChina
  3. 3.University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations