Advertisement

Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes

  • Fanyong YanEmail author
  • Yingxia Jiang
  • Xiaodong Sun
  • Junfu WeiEmail author
  • Liang Chen
  • Yuyang Zhang
Research Article
  • 8 Downloads

Abstract

Multicolor emissive carbon dots (M-CDs) have tremendous potential applications in manifold fields of bioimaging, biomedicine and light-emitting devices. Until now, it is still difficult to produce fluorescence tunable CDs with high quantum yield across the entire visible spectra. In this work, a type of M-CDs with concentration-tunable fluorescence and solvent-affected aggregation states was synthesized by solvothermal treatment of citric acid (CA) and 1-(2-pyridylazo)-2-naphthol (PAN) and the formation mechanism was monitored by different reaction time and raw material ratio. The fluorescence spectra of M-CDs in organic solvents can range from 350 to 750 nm by adjusting the concentration. M-CDs possess different aggregation states in water and organic solvents, accompanied by different fluorescence emission, which is attributed to the different surface states of various component CDs in M-CDs. Moreover, the obtained products can be uniformly dispersed into polymethylmethacrylate (PMMA) solutions as well as epoxy resins to fabricate transparent CDs/PMMA films and CDs/epoxy composites, which can effectively prevent the aggregation and produce multicolor and white light-emitting diodes (WLED). In addition, the prepared WLED with Commission Internationale de L’Eclairage (CIE) of (0.29, 0.31) by using M-CDs/epoxy resin as packages, demonstrating the M-CDs exhibit potential applications for light-emitting devices.

Keywords

carbon dots formation mechanism concentration-tunable fluorescence solvent-affected aggregation states light-emitting devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work described in this manuscript was supported by the National Natural Science Foundation of China (Nos. 51678409, 51638011 and 51578375), Tianjin Research Program of Application Foundation and Advanced Technology (Nos. 18JCYBJC87500 and 15ZCZDSF00880), State Key Laboratory of Separation Membranes and Membrane Processes (No. Z1-201507), and the Program for Innovative Research Team in University of Tianjin (No. TD13-5042).

Supplementary material

12274_2019_2569_MOESM1_ESM.pdf (5.1 mb)
Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes

References

  1. [1]
    Xu, Q.; Li, B. F.; Ye, Y. C.; Cai, W.; Li, W. J.; Yang, C. Y.; Chen, Y. S.; Xu, M.; Li, N.; Zheng, X. S. et al. Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield. Nano Res.2018, 11, 3691–3701.CrossRefGoogle Scholar
  2. [2]
    Bi, Z. H.; Li, T. W.; Su, H.; Ni, Y.; Yan, L. F. Transparent wood film incorporating carbon dots as encapsulating material for white light-emitting diodes. ACS Sustainable Chem. Eng.2018, 6, 9314–9323.CrossRefGoogle Scholar
  3. [3]
    Yan, F. Y.; Sun, Z. H.; Zhang, H.; Sun, X. D.; Jiang, Y. X.; Bai, Z. J. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: A review. Microchim. Acta2019, 186, 583.CrossRefGoogle Scholar
  4. [4]
    Tian, Z.; Zhang, X. T.; Li, D.; Zhou, D.; Jing, P. T.; Shen, D. Z.; Qu, S. N.; Zboril, R.; Rogach, A. L. Full-color inorganic carbon dot phosphors for white-light-emitting diodes. Adv. Opt. Mater.2017, 5, 1700416.CrossRefGoogle Scholar
  5. [5]
    Yuan, F. L.; Wang, Z. B.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater.2017, 29, 1604436.CrossRefGoogle Scholar
  6. [6]
    Yuan, B.; Guan, S. Y.; Sun, X. M.; Li, X. M.; Zeng, H. B.; Xie, Z.; Chen, P.; Zhou, S. Y. Highly efficient carbon dots with reversibly switchable green-red emissions for trichromatic white light-emitting diodes. ACS Appl. Mater. Interfaces2018, 10, 16005–16014.CrossRefGoogle Scholar
  7. [7]
    Mao, L. H.; Tang, W. Q.; Deng, Z. Y.; Liu, S. S.; Wang, C. F.; Chen, S. Facile access to white fluorescent carbon dots toward light-emitting devices. Ind. Eng. Chem. Res.2014, 53, 6417–6425.CrossRefGoogle Scholar
  8. [8]
    Jung, K. K.; Bae, S.; Yi, Y.; Park, M. J.; Kim, S. J.; Myong, N.; Lee, C. L.; Hong, B.; Park, J. H. Origin of white electroluminescence in graphene quantum dots embedded host/guest polymer light emitting diodes. Sci. Rep.2015, 5, 11032.CrossRefGoogle Scholar
  9. [9]
    He, J. L.; He, Y. L.; Chen, Y. H.; Lei, B. F.; Zhuang, J. L.; Xiao, Y.; Liang, Y. R.; Zheng, M. T.; Zhang, H. R.; Liu, Y. L. Solid-state carbon dots with red fluorescence and efficient construction of dual-fluorescence morphologies. Small2017, 13, 1700075.CrossRefGoogle Scholar
  10. [10]
    Zhu, J. Y.; Bai, X.; Zhai, Y.; Chen, X.; Zhu, Y. S.; Pan, G. C.; Zhang, H. Z.; Dong, B.; Song, H. W. Carbon dots with efficient solid-state photoluminescence towards white light-emitting diodes. J. Mater. Chem. C2017, 5, 11416–11420.CrossRefGoogle Scholar
  11. [11]
    Chiang, C. L.; Wu, M. F.; Dai, D. C.; Wen, Y. S.; Wang, J. K.; Chen, C. T. Red-emitting fluorenes as efficient emitting hosts for non-doped, organic red-light-emitting diodes. Adv. Funct. Mater.2005, 15, 231–238.CrossRefGoogle Scholar
  12. [12]
    Ooyama, Y.; Yoshikawa, S.; Watanabe, S.; Yoshida, K. Molecular design of novel non-planar heteropolycyclic fluorophores with bulky substituents: Convenient synthesis and solid-state fluorescence characterization. Org. Biomol. Chem.2006, 4, 3406–3409.CrossRefGoogle Scholar
  13. [13]
    Na, W. D.; Qu, Z. Y.; Chen, X. Q.; Su, X. G. A turn-on fluorescent probe for sensitive detection of sulfide anions and ascorbic acid by using sulfanilic acid and glutathione functionalized graphene quantum dots. Sens. Actuator B: Chem.2018, 256, 48–54.CrossRefGoogle Scholar
  14. [14]
    Hu, Y. P.; Yang, J.; Jia, L.; Yu, J. S. Ethanol in aqueous hydrogen peroxide solution: Hydrothermal synthesis of highly photoluminescent carbon dots as multifunctional nanosensors. Carbon2015, 93, 999–1007.CrossRefGoogle Scholar
  15. [15]
    Hinterberger, V.; Wang, W. S.; Damm, C.; Wawra, S.; Thoma, M.; Peukert, W. Microwave-assisted one-step synthesis of white light-emitting carbon dot suspensions. Opt. Mater.2018, 80, 110–119.CrossRefGoogle Scholar
  16. [16]
    Sun, S.; Zhang, L.; Jiang, K.; Wu, A. G.; Lin, H. W. Toward high-efficient red emissive carbon dots: Facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem. Mater.2016, 28, 8659–8668.CrossRefGoogle Scholar
  17. [17]
    Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano2016, 10, 484–491.CrossRefGoogle Scholar
  18. [18]
    Yan, F. Y.; Bai, Z. J.; Zu, F. L.; Zhang, Y.; Sun, X. D.; Ma, T. C.; Chen, L. Yellow-emissive carbon dots with a large Stokes shift are viable fluorescent probes for detection and cellular imaging of silver ions and glutathione. Microchim. Acta2019, 186, 113–118.CrossRefGoogle Scholar
  19. [19]
    Yan, F. Y.; Zu, F. Y.; Xu, J. X.; Zhou, X. G.; Bai, Z. J.; Ma, C.; Luo, Y. M.; Chen, L. Fluorescent carbon dots for ratiometric detection of curcumin and ferric ion based on inner filter effect, cell imaging and PVDF membrane fouling research of iron flocculants in wastewater treatment. Sens. Actuator B: Chem.2019, 287, 231–240.CrossRefGoogle Scholar
  20. [20]
    Zhao, L. X.; Di, F.; Wang, D. B.; Guo, L. H.; Yang, Y.; Wan, B.; Zhang, H. Chemiluminescence of carbon dots under strong alkaline solutions: A novel insight into carbon dot optical properties. Nanoscale2013, 5, 2655–2658.CrossRefGoogle Scholar
  21. [21]
    Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater.2018, 30, 1704740.CrossRefGoogle Scholar
  22. [22]
    Long, P.; Feng, Y. Y.; Cao, C.; Li, Y.; Han, J. K.; Li, S. W.; Peng, C.; Li, Z. Y.; Feng, W. Self-protective room-temperature phosphorescence of fluorine and nitrogen codoped carbon dots. Adv. Funct. Mater.2018, 28, 1800791.CrossRefGoogle Scholar
  23. [23]
    Grissa, R.; Abramova, A.; Tambio, S. J.; Lecuyer, M.; Deschamps, M.; Fernandez, V.; Greneche, J. M.; Guyomard, D.; Lestriez, B.; Moreau, P. Thermomechanical polymer binder reactivity with positive active materials for Li metal polymer and Li-ion batteries: An XPS and XPS imaging study. ACS Appl. Mater. Interfaces2019, 11, 18368–18376.CrossRefGoogle Scholar
  24. [24]
    Yan, F. Y.; Jiang, Y. X.; Sun, X. D.; Bai, Z. J.; Zhang, Y.; Zhou, X. G. Surface modification and chemical functionalization of carbon dots: A review. Microchim. Acta2018, 185, 424.CrossRefGoogle Scholar
  25. [25]
    Xu, X.; He, L.; Long, Y. W.; Pan, S.; Liu, H.; Yang, J. D.; Hu, X. L. S-doped carbon dots capped ZnCdTe quantum dots for ratiometric fluorescence sensing of guanine. Sens. Actuator B: Chem.2019, 279, 44–52.CrossRefGoogle Scholar
  26. [26]
    Yue, Z.; Lisdat, F.; Parak, W. J.; Hickey, S. G.; Tu, L. P.; Sabir, N.; Dorfs, D.; Bigall, N. C. quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl. Mater. Interfaces2013, 5, 2800–2814.CrossRefGoogle Scholar
  27. [27]
    Zhang, Y. Q.; Zhuo, P.; Yin, H.; Fan, Y.; Zhang, J. H.; Liu, X. Y.; Chen, Z. Q. Solid-state fluorescent carbon dots with aggregation-induced yellow emission for white light-emitting diodes with high luminous efficiencies. ACS Appl. Mater. Interfaces2019, 11, 24395–24403.CrossRefGoogle Scholar
  28. [28]
    Zhou, Y. F.; Benetti, D.; Tong, X.; Jin, L.; Wang, Z. M.; Ma, D. L.; Zhao, H. G.; Rosei, F. Colloidal carbon dots based highly stable luminescent solar concentrators. Nano Energy2018, 44, 378–387.CrossRefGoogle Scholar
  29. [29]
    Li, F.; Li, T. Y.; Sun, C. X.; Xia, J. H.; Jiao, Y.; Xu, H. P. Selenium-doped carbon quantum dots for free-radical scavenging. Angew. Chem, Int. Ed.2017, 56, 9910–9914.CrossRefGoogle Scholar
  30. [30]
    Yuan, F. L.; He, P.; Xi, Z. F.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Res.2019, 12, 1669–1674.CrossRefGoogle Scholar
  31. [31]
    Xu, Q.; Kuang, T. R.; Liu, Y.; Cai, L. L.; Peng, X. F.; Sreeprasad, T. S.; Zhao, P.; Yu, Z. Q.; Li, N. Heteroatom-doped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications. J. Mater. Chem. B2016, 4, 7204–7219.CrossRefGoogle Scholar
  32. [32]
    Lu, S. Y.; Cong, R. D.; Zhu, S. J.; Zhao, X. H.; Liu, J. J.; Tse, J. S.; Meng, S.; Yang, B. pH-dependent synthesis of novel structure-controllable polymer-carbon nanodots with high acidophilic luminescence and super carbon dots assembly for white light-emitting diodes. ACS Appl. Mater. Interfaces2016, 8, 4062–4068.CrossRefGoogle Scholar
  33. [33]
    Wang, C.; Zhou, J. D.; Ran, G. X.; Li, F.; Zhong, Z.; Song, Q. J.; Dong, Q. C. Bi-functional fluorescent polymer dots: A one-step synthesis via controlled hydrothermal treatment and application as probes for the detection of temperature and Fe3+. J. Mater. Chem. C2017, 5, 434–443.CrossRefGoogle Scholar
  34. [34]
    Hu, S. L.; Trinchi, A.; Atkin, P.; Cole, I. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew. Chem., Int. Ed.2015, 54, 2970–2974.CrossRefGoogle Scholar
  35. [35]
    Han, L.; Liu, S. G.; Dong, J. X.; Liang, J. Y.; Li, L. J.; Li, N. B.; Luo, H. Q. Facile synthesis of multicolor photoluminescent polymer carbon dots with surface-state energy gap-controlled emission. J. Mater. Chem. C2017, 5, 10785–10793.CrossRefGoogle Scholar
  36. [36]
    Zhang, T. Y.; Zhao, F. F.; Li, L.; Qi, B.; Zhu, D. X.; Lü, J. H.; Lü, C. L. Tricolor white-light-emitting carbon dots with multiple-cores@shell structure for WLED application. ACS Appl. Mater. Interfaces2018, 10, 19796–19805.CrossRefGoogle Scholar
  37. [37]
    Kwon, W.; Do, S.; Lee, J.; Hwang, S.; Kim, J. K.; Rhee, S. W. Freestanding luminescent films of nitrogen-rich carbon nanodots toward large-scale phosphor-based white-light-emitting devices. Chem. Mater.2013, 25, 1893–1899.CrossRefGoogle Scholar
  38. [38]
    Mintz, K. J.; Zhou, Y. Q.; Leblanc, R. M. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale2019, 11, 4634–4652.CrossRefGoogle Scholar
  39. [39]
    Li, H.; Zhang, Z. E.; Liu, Y. L.; Cen, W. L.; Luo, X. B. Functional group effects on the HOMO-LUMO gap of g-C3N4. Nanomaterials2018, 8, 589.CrossRefGoogle Scholar
  40. [40]
    Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater.2017, 29, 1702910.CrossRefGoogle Scholar
  41. [41]
    Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature2014, 515, 96–99.CrossRefGoogle Scholar
  42. [42]
    Shamsipur, M.; Barati, A.; Karami, S. Long-wavelength, multicolor, and white-light emitting carbon-based dots: Achievements made, challenges remaining, and applications. Carbon2017, 124, 429–472.CrossRefGoogle Scholar
  43. [43]
    Wang, C.; Hu, T. T.; Chen, Y. Y.; Xu, Y. L.; Song, Q. J. Polymer-assisted self-assembly of multicolor carbon dots as solid-state phosphors for fabrication of warm, high-quality, and temperature-responsive white-light-emitting devices. ACS Appl. Mater. Interfaces2019, 11, 22332–22338.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical EngineeringTiangong UniversityTianjinChina
  2. 2.Graduate School of Life ScienceHokkaido UniversitySapporoJapan

Personalised recommendations