Advertisement

Nano Research

, Volume 12, Issue 12, pp 3129–3134 | Cite as

Blue emitting CsPbBr3 perovskite quantum dot inks obtained from sustained release tablets

  • Hewei Yang
  • Yaqing Feng
  • Zhiyu Tu
  • Kuo Su
  • Xiaozhi Fan
  • Bingjie Liu
  • Zhiping Shi
  • Yuzhe Zhang
  • Chenyang Zhao
  • Bao ZhangEmail author
Research Article
  • 81 Downloads

Abstract

Blue emitting perovskite ink obtained from cesium lead halide quantum dots bearing chlorine (CsPbClxBr3−x, 0 < x ≤ 3) suffers from the low photoluminescence quantum yield and poor stability. Cesium lead bromine (CsPbBr3) quantum dots free of chlorine have more stable crystal structure and fewer crystal defects. Precise control of crystal sizes and surface passivation components of CsPbBr3 quantum dots is crucial for the best use of quantum confinement effect and blueshift of emission wavelength to blue region. Here, by polymerizing acrylamide under UV-light irradiation to form polymer gel networks in dimethyl sulfoxide (DMSO) with CsPbBr3 precursors and passivating agents trapped, we successfully prepared novel sustained release tablets with different shapes and sizes. Thanks to the limitation of the polymer networks on solvent releasing, the resulting CsPbBr3 quantum dots have the average size of 1.1 ± 0.2 nm. On the basis of the excellent quantum confinement effect and optimized surface passivation, the obtained PQD ink can emit high quality blue light for more than 6 weeks. This work elucidates a new and convenient technique to prepare blue emission perovskite quantum dots ink with high stability and photoluminescence quantum yield and provides a great potential technology for the preparation of perovskite optoelectronic devices.

KeyWords

sustained release tablet perovskite quantum dot blue emitting perovskite ink polymer gel surface passivation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work is supported by the National Natural Science Foundation of China (No. 21761132007) and the National Key R&D Program of China (No. 2016YFE0114900).

Supplementary material

12274_2019_2566_MOESM1_ESM.mp4 (20.6 mb)
Supplementary material, approximately 20.5 MB.
12274_2019_2566_MOESM2_ESM.pdf (3.5 mb)
Blue emitting CsPbBr3 perovskite quantum dot inks obtained from sustained release tablets

References

  1. [1]
    Liu, J. H.; Yang, Z. X.; Ye, B. Q.; Zhao, Z. W.; Ruan, Y. S.; Guo, T. L.; Yu, X. B.; Chen, G. X.; Xu, S. A review of stability-enhanced luminescent materials: Fabrication and optoelectronic applications J. Mater. Chem. C2019, 7, 4934–4955.Google Scholar
  2. [2]
    Yang, H. W.; Wang, A.; Zhang, L. M.; Zhou, X. Y.; Yang, G.; Li, Y. J.; Zhang, Y. Z.; Zhang, B.; Song, J.; Feng, Y. Q. Healable terpyridine-based supramolecular gels and the luminescent properties of the rare earth metal complex New J. Chem.2017, 41, 15173–15179.Google Scholar
  3. [3]
    Lozano, G. The role of metal halide perovskites in next-generation lighting devices. J Phys. Chem. Lett.2018, 9, 3987–3997.Google Scholar
  4. [4]
    Yang, H. W.; Zhang, Y. Z.; Li, Y. J.; Wang, J. X.; Li, X. M.; Song, J.; Zhang, B.; Feng, Y. Q. New member of luminescent materials—Status and future of white light emitting gel Chin. J. Org. Chem.2017, 37, 1991–2001.Google Scholar
  5. [5]
    Yang, H. W.; Zhou, Y. Z.; Yang, Y. J.; Yi, D.; Ye, T.; Lam, T. D.; Golberg, D.; Bao, B. T.; Yao, J. N.; Wang, X. Crystal facet engineering induced anisotropic transport of charge carriers in a perovskite J. Mater. Chem. C2018, 6, 11707–11713.Google Scholar
  6. [6]
    Zhang, Y.; Gao, P.; Oveisi, E.; Lee, Y.; Jeangros, Q.; Grancini, G.; Paek, S.; Feng, Y. Q.; Nazeeruddin, M. K. PbI2-HMPA complex pretreatment for highly reproducible and efficient CH3NH3PbI3 perovskite solar cells J. Am. Chem. Soc.2016, 138, 14380–14387.Google Scholar
  7. [7]
    Zhang, Y.; Zhang, Z. F.; Yan, W.; Zhang, B.; Feng, Y. Q.; Asiri, A. M.; Nazeeruddin, M. K.; Gao, P. Hexagonal mesoporous silica islands to enhance photovoltaic performance of planar junction perovskite solar cells. J Mater. Chem. A2017, 5, 1415–1420.Google Scholar
  8. [8]
    Zhao, B. Y.; Jin, S. F.; Huang, S.; Liu, N.; Ma, J. Y.; Xue, D. J.; Han, Q. W.; Ding, J.; Ge, Q. Q.; Feng, Y. Q. et al. Thermodynamically stable orthorhombic γ-CsPbI3 thin films for high-performance photovoltaics. J. Am Chem. Soc.2018, 140, 11716–11725.Google Scholar
  9. [9]
    Zhou, Q.; Liang, L. S.; Hu, J. J.; Cao, B. B.; Yang, L. K.; Wu, T. J.; Li, X.; Zhang, B.; Gao, P. High-performance perovskite solar cells with enhanced environmental stability based on a (p-FC6H4C2H4NH3)2[PbI4] capping layer Adv. Energy Mater.2019, 9, 1802595.Google Scholar
  10. [10]
    Huang, S.; Huang, P.; Wang, L.; Han, J. B.; Chen, Y.; Zhong, H. Z. Halogenated-methylammonium based 3D halide perovskites Adv. Mater.2019, 31, 1903830.Google Scholar
  11. [11]
    Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.; Sadhanala, A.; Pazos, L. M.; Credgington, D. et al. Bright light-emitting diodes based on organometal halide perovskite Nat. Nanotechnol.2014, 9, 687–692.Google Scholar
  12. [12]
    Lin, K. B.; Xing, J.; Quan, L. N.; De Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent Nature2018, 562, 245–248.Google Scholar
  13. [13]
    Xu, W. D.; Hu, Q.; Bai, S.; Bao, C. X.; Miao, Y. F.; Yuan, Z. C.; Borzda, T.; Barker, A. J.; Tyukalova, E.; Hu, Z. J. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes Nat. Photonics2019, 13, 418–424.Google Scholar
  14. [14]
    Shen, Y.; Cheng, L. P.; Li, Y. Q.; Li, W.; Chen, J. D.; Lee, S. T.; Tang, J. X. High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement Adv. Mater.2019, 31, 1901517.Google Scholar
  15. [15]
    Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals Science2017, 358, 745–750.Google Scholar
  16. [16]
    Wei, Y.; Cheng, Z. Y; Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs Chem. Soc. Rev.2019, 48, 310–350.Google Scholar
  17. [17]
    Wu, Y.; Li, X. M.; Zeng, H. B. Highly luminescent and stable halide perovskite nanocrystals ACS Energy Lett.2019, 4, 673–681.Google Scholar
  18. [18]
    Wu, Z. H.; Wei, J.; Sun, Y. N.; Wu, J.; Hou, Y. F.; Wang, P.; Wang, N. P.; Zhao, Z. F. Air-stable all-inorganic perovskite quantum dot inks for multicolor patterns and white LEDs J. Mater. Sci.2019, 54, 6917–6929.Google Scholar
  19. [19]
    Liu, H. W.; Liu, Z. Y.; Xu, W. Z.; Yang, L. T.; Liu, Y.; Yao, D.; Zhang, D. Q.; Zhang, H.; Yang, B. Engineering the photoluminescence of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals across the full visible spectra with the interval of 1 nm ACS Appl. Mater. Interfaces2019, 11, 14256–14265.Google Scholar
  20. [20]
    Gong, Z. L.; Zheng, W.; Gao, Y.; Huang, P.; Tu, D. T.; Li, R. F.; Wei, J. J.; Zhang, W.; Zhang, Y. Q.; Chen, X. Y. Full-spectrum persistent luminescence tuning using all-inorganic perovskite quantum dots Angew. Chem., Int. Ed.2019, 58, 6943–6947.Google Scholar
  21. [21]
    Bi, C. H.; Wang, S. X.; Li, Q.; Kershaw, S. V.; Tian, J. J.; Rogach, A. L. Thermally stable copper(II)-doped cesium lead halide perovskite quantum dots with strong blue emission. J Phys. Chem. Lett.2019, 10, 943–952.Google Scholar
  22. [22]
    Li, X. M.; Zhang, K.; Li, J. H.; Chen, J.; Wu, Y.; Liu, K.; Song, J. Z.; Zeng, H. B. Heterogeneous nucleation toward polar-solvent-free, fast, and one-pot synthesis of highly uniform perovskite quantum dots for wider color gamut display. Adv Mater. Interfaces.2018, 5, 1800010.Google Scholar
  23. [23]
    Pan, J.; Shang, Y. Q.; Yin, J.; Bastiani, M. D.; Peng, W.; Dursun, I.; Sinatra, L.; El-Zohry, A. M.; Hedhili, M. N.; Emwas, A. H. et al. Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes. J. Am Chem. Soc.2018, 140, 562–565.Google Scholar
  24. [24]
    Koscher, B. A.; Swabeck, J. K.; Bronstein, N. D.; Alivisatos, A. P. Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment.J. Am Chem. Soc.2017, 139, 6566–6569.Google Scholar
  25. [25]
    Yang, D. D.; Li, X. M.; Zhou, W. H.; Zhang, S. L.; Meng, C. F.; Wu, Y.; Wang, Y.; Zeng, H. B. CsPbBr3 quantum dots 2.0: Benzenesulfonic acid equivalent ligand awakens complete purification Adv. Mater.2019, 31, 1900767.Google Scholar
  26. [26]
    Jiang, Y. Z.; Qin, C. C.; Cui, M. H.; He, T. W.; Liu, K. K.; Huang, Y. M.; Luo, M. H.; Zhang, L.; Xu, H. Y.; Li, S. S. et al. Spectra stable blue perovskite light-emitting diodes Nat. Commun.2019, 10, 1868.Google Scholar
  27. [27]
    Zou, S. H.; Liu, C. P.; Li, R. F.; Jiang, F. L.; Chen, X. Y.; Liu, Y. S.; Hong, M. S. From nonluminescent to blue-emitting Cs4PbBr6 nanocrystals: Tailoring the insulator bandgap of 0D perovskite through Sn cation doping Adv. Mater.2019, 31, 1900606.Google Scholar
  28. [28]
    Zhang, X. T.; Wang, H.; Hu, Y.; Pei, Y. X.; Wang, S. X.; Shi, Z. F.; Colvin, V. L.; Wang, S. N.; Zhang, Y.; Yu, W. W. Strong blue emission from Sb3+-doped super small CsPbBr3 nanocrystals J. Phys. Chem. Lett.2019, 10, 1750–1756.Google Scholar
  29. [29]
    Lu, W. G.; Chen, C.; Han, D. B.; Yao, L. H.; Han, J. B.; Zhong, H. Z.; Wang, Y. T. Nonlinear optical properties of colloidal CH3NH3PbBr3 and CsPbBr3 quantum dots: A comparison study using Z-scan technique Adv. Opt. Mater.2016, 4, 1732–1737.Google Scholar
  30. [30]
    Zhang, F.; Xiao, C. T.; Li, Y. F.; Zhang, X.; Tang, J. L.; Chang, S.; Pei, Q. B.; Zhong, H. Z. Gram-scale synthesis of blue-emitting CH3NH3PbBr3 quantum dots through phase transfer strategy Front. Chem.2018, 6, 444.Google Scholar
  31. [31]
    Kojima, A.; Ikegami, M.; Teshima, K.; Miyasaka, T. Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media Chem. Lett.2012, 41, 397–399.Google Scholar
  32. [32]
    Malgras, V.; Henzie, J.; Takei, T.; Yamauchi, Y. Stable blue luminescent CsPbBr3 perovskite nanocrystals confined in mesoporous thin films Angew. Chem., Int. Ed.2018, 130, 9019–9023.Google Scholar
  33. [33]
    Deng, W.; Fang, H.; Jin, X. C.; Zhang, X. J.; Zhang, X. J.; Jie, J. S. Organic-inorganic hybrid perovskite quantum dots for light-emitting diodes. J Mater. Chem. C2018, 6, 4831–4841.Google Scholar
  34. [34]
    Lee, K. H.; Lee, J. H.; Kang, H. D.; Park, B.; Kwon, Y.; Ko, H.; Lee, C.; Lee, J.; Yang, H. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots ACS Nano2014, 8, 4893–4901.Google Scholar
  35. [35]
    Li, X. M.; Cao, F.; Yu, D. J.; Chen, J.; Sun, Z. G.; Shen, Y. L.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y. et al. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications Small2017, 13, 1603996.Google Scholar
  36. [36]
    Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv Funct. Mater.2016, 26, 2435–2445.Google Scholar
  37. [37]
    Hu, G. M.; Qin, W. J.; Liu, M. M.; Ren, X. X.; Wu, X. M.; Yang, L. Y.; Yin, S. G. Scalable room-temperature synthesis of plum-pudding-like Cs4PbBr6/CsPbBr3 microcrystals exhibiting excellent photoluminescence J. Mater. Chem. C2019, 7, 4733–4739.Google Scholar
  38. [38]
    Dai, S. W.; Hsu, B. W.; Chen, C. Y.; Lee, C. A.; Liu, H. Y.; Wang, H. F.; Huang, Y. C.; Wu, T. L.; Manikandan, A.; Ho, R. M. et al. Perovskite quantum dots with near unity solution and neat-film photoluminescent quantum yield by novel spray synthesis Adv. Mater.2018, 30, 1705532.Google Scholar
  39. [39]
    Li, B.; Ding, Z. J.; Li, Z. Q.; Li, H. R. Simultaneous enhancement of mechanical strength and luminescence performance in double-network supramolecular hydrogels J. Mater. Chem. C2018, 6, 6869–6874.Google Scholar
  40. [40]
    Takahashi, R.; Shimano, K.; Okazaki, H.; Kurokawa, T.; Nakajima, T.; Nonoyama, T.; King, D. R.; Gong, J. P. Tough particle-based double network hydrogels for functional solid surface coatings Adv. Mater. Interfaces2018, 5, 1801018.Google Scholar
  41. [41]
    Zhang, Y. Z.; Yang, H. W.; Guan, S.; Liu, Z. H.; Guo, L. Y.; Xie, J. W.; Zhang, J. B.; Zhang, N. N.; Song, J.; Zhang, B. et al. Gelation properties of terpyridine gluconic acid derivatives and their reversible stimuli-responsive white light emitting solution Dyes Pigm.2018, 157, 64–71.Google Scholar
  42. [42]
    Song, Z. Y.; Li, L. C.; Zhu, D. Z.; Miao, L.; Duan, H.; Wang, Z. W.; Xiong, W.; Lv, Y. K.; Liu, M. X.; Gan, L. H. Synergistic design of a N, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solidstate supercapacitors with an ultrahigh energy density J. Mater. Chem. A2019, 7, 816–826.Google Scholar
  43. [43]
    Liu, B.; Liu, W. G. Poly(vinyl diaminotriazine): From molecular recognition to high-strength hydrogels Macromol. Rapid Commun.2018, 39, 1800190.Google Scholar
  44. [44]
    Ghaffar, T.; Parkins, A. W. The catalytic hydration of nitriles to amides using a homogeneous platinum phosphinito catalyst J Mol Catal A: Chem.2000, 160, 249–261.Google Scholar
  45. [45]
    Wu, L. Z.; Zhong, Q. X.; Yang, D.; Chen, M.; Hu, H. C.; Pan, Q.; Liu, H. Y.; Cao, M. H.; Xu, Y.; Sun, B. Q. et al. Improving the stability and size tunability of cesium lead halide perovskite nanocrystals using trioctylphosphine oxide as the capping ligand Langmuir2017, 33, 12689–12696.Google Scholar
  46. [46]
    Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind. Eng Chem. Res.2003, 42, 2427–2433.Google Scholar
  47. [47]
    Kosugi, T.; Iso, Y.; Isobe, T. Effects of oleic acid on the stability of perovskite CsPbBr3 quantum dot dispersions Chem. Lett.2019, 48, 349–352.Google Scholar
  48. [48]
    Bronstein, L. M.; Huang, X. L.; Retrum, J.; Schmucker, A.; Pink, M.; Stein, B. D.; Dragnea, B. Influence of iron oleate complex structure on iron oxide nanoparticle formation Chem. Mater.2007, 19, 3624–3632.Google Scholar
  49. [49]
    Chen, H. T.; Guo, A. Q.; Zhu, J.; Cheng, L. W.; Wang, Q. Tunable photoluminescence of CsPbBr3 perovskite quantum dots for their physical research Appl. Surf. Sci.2019, 465, 656–664.Google Scholar
  50. [50]
    Brennan, M. C.; Herr, J. E.; Nguyen-Beck, T. S.; Zinna, J.; Draguta, S.; Rouvimov, S.; Parkhill, J.; Kuno, M. Origin of the size-dependent stokes shift in CsPbBr3 perovskite nanocrystals J. Am. Chem. Soc.2017, 139, 12201–12208.Google Scholar
  51. [51]
    Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut Nano Lett.2015, 15, 3692–3696.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hewei Yang
    • 1
    • 2
  • Yaqing Feng
    • 1
    • 2
  • Zhiyu Tu
    • 1
  • Kuo Su
    • 1
    • 2
  • Xiaozhi Fan
    • 3
  • Bingjie Liu
    • 1
  • Zhiping Shi
    • 1
    • 2
  • Yuzhe Zhang
    • 1
    • 2
  • Chenyang Zhao
    • 1
  • Bao Zhang
    • 1
    Email author
  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina
  3. 3.School of Life SciencesTianjin UniversityTianjinChina

Personalised recommendations