Advertisement

Nano Research

, Volume 12, Issue 12, pp 3095–3100 | Cite as

Electronic structure of exfoliated millimeter-sized monolayer WSe2 on silicon wafer

  • Wenjuan Zhao
  • Yuan HuangEmail author
  • Cheng Shen
  • Cong Li
  • Yongqing Cai
  • Yu Xu
  • Hongtao Rong
  • Qiang Gao
  • Yang Wang
  • Lin Zhao
  • Lihong Bao
  • Qingyan Wang
  • Guangyu Zhang
  • Hongjun Gao
  • Zuyan Xu
  • Xingjiang ZhouEmail author
  • Guodong LiuEmail author
Research Article

Abstract

The monolayer WSe2 is interesting and important for future application in nanoelectronics, spintronics and valleytronics devices, because it has the largest spin splitting and longest valley coherence time among all the known monolayer transition-metal dichalcogenides (TMDs). To obtain the large-area monolayer TMDs crystal is the first step to manufacture scalable and high-performance electronic devices. In this letter, we have successfully fabricated millimeter-sized monolayer WSe2 single crystals with very high quality, based on our improved mechanical exfoliation method. With such superior samples, using standard high resolution angle-resolved photoemission spectroscopy, we did comprehensive electronic band structure measurements on our monolayer WSe2. The overall band features point it to be a 1.2 eV direct band gap semiconductor. Its spin splitting of the valence band at K point is found as 460 meV, which is 30 meV less than the corresponding band splitting in its bulk counterpart. The effective hole masses of valence bands are determined as 2.344 me at Γ, and 0.529 me as well as 0.532 me at K for the upper and lower branch of splitting bands, respectively. And screening effect from substrate is shown to substantially impact on the electronic properties. Our results provide important insights into band structure engineering in monolayer TMDs. Our monolayer WSe2 crystals may constitute a valuable device platform.

Keywords

transition-metal dichalcogenides WSe2 monolayer electronic structure angle-resolved photoemission spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by the National Science Foundation of China (Nos. 11574367 and 11874405), the National Key Research and Development Program of China (Nos. 2016YFA0300600, 2018YFA0704200, and 2019YFA0308000), and the Youth Innovation Promotion Association of CAS (Nos. 2017013 and 2019007).

Supplementary material

12274_2019_2557_MOESM1_ESM.pdf (995 kb)
Electronic structure of exfoliated millimeter-sized monolayer WSe2 on silicon wafer

References

  1. [1]
    Geim, A. K. Graphene: Status and prospects. Science2009, 324, 1530–1534.Google Scholar
  2. [2]
    Pacilé, D.; Meyer, J. C.; Girit, Ç. Ö.; Zett, A. The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett.2008, 92, 133107.Google Scholar
  3. [3]
    Liu, H.; Neal, A. T.; Zhu, Z; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano2014, 8, 4033-4011.Google Scholar
  4. [4]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol.2012, 7, 699–712.Google Scholar
  5. [5]
    Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys.1969, 18, 193–335.Google Scholar
  6. [6]
    Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature2017, 546, 270–273.Google Scholar
  7. [7]
    Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature2018, 563, 94–99.Google Scholar
  8. [8]
    Ellis, J. K.; Lucero, M. J.; Scuseria, G. E. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett.2011, 99, 261908.Google Scholar
  9. [9]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett.2010, 105, 136805.Google Scholar
  10. [10]
    Zhu, Z. Y.; Cheng, Y. C.; Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B2011, 84, 153402.Google Scholar
  11. [11]
    Cheiwchanchamnangij, T.; Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B2012, 85, 205302.Google Scholar
  12. [12]
    Kumar, A.; Ahluwalia, P. K. Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: New direct band gap semiconductors. Eur. Phys. J. B2012, 85, 186.Google Scholar
  13. [13]
    Zhang, Y.; Chang, T. R.; Zhou, B.; Cui, Y. T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol.2014, 9, 111–115.Google Scholar
  14. [14]
    Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett.2012, 108, 196802.Google Scholar
  15. [15]
    Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun.2012, 3, 887.Google Scholar
  16. [16]
    Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol.2012, 7, 490–493.Google Scholar
  17. [17]
    Riley, J. M.; Mazzola, F.; Dendzik, M.; Michiardi, M.; Takayama, T.; Bawden, L.; Granerød, C.; Leandersson, M.; Balasubramanian, T.; Hoesch, M. et al. Direct observation of spin-polarized bulk bands in an inversionsymmetric semiconductor. Nat. Phys.2014, 10, 835–839.Google Scholar
  18. [18]
    Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, T.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett.2010, 10, 1271–1275.Google Scholar
  19. [19]
    Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B2012, 86, 115409.Google Scholar
  20. [20]
    Zhu, B. R.; Chen, X.; Cui, X. D. Exciton binding energy of monolayer WS2. Sci. Rep.2015, 5, 9218.Google Scholar
  21. [21]
    Ugeda, M. M.; Bradley, A. J.; Shi, S. F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S. K.; Hussain, Z.; Shen, Z. X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater.2014, 13, 1091–1095.Google Scholar
  22. [22]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol.2011, 6, 147–150.Google Scholar
  23. [23]
    Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater.2016, 1, 16052.Google Scholar
  24. [24]
    Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol.2013, 8, 497–501.Google Scholar
  25. [25]
    Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater.2016, 1, 16042.Google Scholar
  26. [26]
    Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys.2014, 10, 343–350.Google Scholar
  27. [27]
    Zhang, Y.; Ugeda, M. M.; Jin, C. C.; Shi, S. F.; Bradley, A. J.; Martín- Recio, A.; Ryu, H.; Kim, J.; Tang, S. J.; Kim, Y. et al. Electronic structure, surface doping, and optical response in epitaxial WSe2 thin films. Nano Lett.2016, 16, 2485–2491.Google Scholar
  28. [28]
    Hao, K.; Moody, G.; Wu, F. C.; Dass, C. K.; Xu, L. X.; Chen, C. H.; Sun, L. Y.; Li, M. Y.; Li, L. J.; MacDonald, A. H. et al. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys.2016, 12, 677–682.Google Scholar
  29. [29]
    Le, D.; Barinov, A.; Preciado, E.; Isarraraz, M.; Tanabe, I.; Komesu, T.; Troha, C.; Bartels, L.; Rahman, T. S.; Dowben, P. A. Spin-orbit coupling in the band structure of monolayer WSe2. J. Phys.: Condens. Matter2015, 27, 182201.Google Scholar
  30. [30]
    Wilson, N. R.; Nguyen, P. V.; Seyler, K.; Rivera, P.; Marsden, A. J.; Laker, Z. P. L.; Constantinescu, G. C.; Kandyba, V.; Barinov, V.; Hine, N. D. M. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv.2017, 3, e1601832.Google Scholar
  31. [31]
    Huang, Y.; Sutter, E.; Shi, N. N.; Zheng, J. B.; Yang, T. Z.; Englund, T.; Gao, H. J.; Sutter, P. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano2015, 9, 10612–10620.Google Scholar
  32. [32]
    Liu, G. D.; Wang, G. L.; Zhu, Y.; Zhang, H. B.; Zhang, G. C.; Wang, X. Y.; Zhou, Y.; Zhang, W. T; Liu, H. Y.; Zhao, L. et al. Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1 meV. Rev. Sci. Instrum.2008, 79, 023105.Google Scholar
  33. [33]
    Coehoorn, R.; Haas, C.; Dijkstra, J.; Flipse, C. J. F.; de Groot, R. A.; Wold, A. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Phys. Rev. B1987, 35, 6195–6202.Google Scholar
  34. [34]
    Blake, P.; Hill, E. W.; Neto, A. H. C.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett.2007, 91, 063124.Google Scholar
  35. [35]
    Huang, Y.; Sutter, E.; Sadowski, J. T.; Cotlet, M.; Monti, O. L. A.; Racke, D. A.; Neupane, M. R.; Wickramaratne, D.; Lake, R. K. et al. Tin disulfide-an emerging layered metal dichalcogenide semiconductor: Materials properties and device characteristics. ACS Nano2014, 8, 10743–10755.Google Scholar
  36. [36]
    Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett.2012, 12, 3788–3792.Google Scholar
  37. [37]
    Liu, W.; Kang, J. H.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett.2013, 13, 1983–1990.Google Scholar
  38. [38]
    Huang, Y.; Wang, X.; Zhang, X.; Chen, X. J.; Li, B. W.; Wang, B.; Huang, M.; Zhu, C. Y.; Zhang, X. W.; Bacsa, W. S. et al. Raman spectral band oscillations in large graphene bubbles. Phy. Rev. Lett.2018, 120, 186104.Google Scholar
  39. [39]
    Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev.2015, 44, 2757–2785.Google Scholar
  40. [40]
    Zibouche, N.; Kuc, A.; Musfeldt, J.; Heine, T. Transition-metal dichalcogenides for spintronic applications. Ann. Phys.2014, 526, 395–401.Google Scholar
  41. [41]
    Dendzik, M.; Michiardi, M.; Sanders, C.; Bianchi, C.; Miwa, J. A.; Grønborg, S. S.; Lauritsen, J. V.; Bruix, A.; Hammer, B.; Hofmann, P. Growth and electronic structure of epitaxial single-layer WS2 on Au(111). Phy. Rev. B2015, 92, 245442.Google Scholar
  42. [42]
    Miwa, J. A.; Ulstrup, S.; Sørensen, S. G.; Dendzik, M.; Čabo, A. G.; Bianchi, M.; Lauritsen, J. V.; Hofmann, P. Electronic structure of epitaxial single-layer MoS2. Phy. Rev. Lett.2015, 114, 046802.Google Scholar
  43. [43]
    Shanavas, S. K.; Satpathy, S. Effective tight-binding model for MX2 under electric and magnetic fields. Phys. Rev. B2015, 91, 235145.Google Scholar
  44. [44]
    Liu, G. B.; Shan, W. Y.; Yao, Y. G.; Yao, W.; Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B2013, 88, 085433.Google Scholar
  45. [45]
    Ci, P. H.; Chen, P. B.; Kang, J.; Suzuki, R.; Choe, H. S.; Suh, J.; Ko, C.; Park, T.; Shen, K.; Iwasa, Y. et al. Quantifying van der Waals interactions in layered transition metal dichalcogenides from pressure-enhanced valence band splitting. Nano Lett.2017, 17, 4982–4988.Google Scholar
  46. [46]
    Dou, X. M.; Ding, K.; Jiang, D. S.; Fan, X. F.; Sun, B. Q. Probing spin- orbit coupling and interlayer coupling in atomically thin molybdenum disulfide using hydrostatic pressure. ACS Nano2016, 10, 1619–1624.Google Scholar
  47. [47]
    Zhang, Y. W.; Li, H.; Wang, H. M.; Liu, R.; Zhang, R. L.; Qiu, Z. J. On valence-band splitting in layered MoS2. ACS Nano, 2015, 9, 8514–8519.Google Scholar
  48. [48]
    Fan, X. F.; Singh, D. J.; Zheng, W. T. Valence band splitting on multilayer MoS2: Mixing of spin−orbit coupling and interlayer coupling. J. Phys. Chem. Lett.2016, 7, 2175–2781.Google Scholar
  49. [49]
    Alidoust, N.; Bian, G.; Xu, S. Y.; Sankar, R.; Neupane, M.; Liu, C.; Belopolski, I.; Qu, D. X.; Denlinger, J. D.; Chou, F. C. et al. Observation of monolayer valence band spin-orbit effect and induced quantum well states in MoX2. Nat. Commun.2014, 5, 4673.Google Scholar
  50. [50]
    Smith, N. V.; Fisher, G. B. Photoemission studies of the alkali metals. II. Rubidium and cesium. Phys. Rev. B1971, 3, 3662.Google Scholar
  51. [51]
    Adelung, R.; Brandt, J.; Kipp, L.; Skibowski, M. Reconfiguration of charge density waves by surface nanostructures on TaS2. Phys. Rev. B2000, 63, 165327.Google Scholar
  52. [52]
    Chiang, T. C. Photoemission studies of quantum well states in thin films. Surf. Sci. Rep.2000, 39, 181–235.Google Scholar
  53. [53]
    Absor, M. A. U.; Kotaka, H.; Ishii, F.; Saito, M. Strain-controlled spin splitting in the conduction band of monolayer WS2. Phys. Rev. B2016, 94, 115131.Google Scholar
  54. [54]
    Kormányos, A.; Burkard, G.; Gmitra, M.; Fabian, J.; Zólyomi, V.; Drummond, N. D.; Fal’ko, V. k·p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater.2015, 2, 022001.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wenjuan Zhao
    • 1
    • 2
  • Yuan Huang
    • 1
    • 2
    Email author
  • Cheng Shen
    • 1
    • 2
  • Cong Li
    • 1
    • 2
  • Yongqing Cai
    • 1
    • 2
  • Yu Xu
    • 1
    • 2
  • Hongtao Rong
    • 1
    • 2
  • Qiang Gao
    • 1
    • 2
  • Yang Wang
    • 1
    • 2
  • Lin Zhao
    • 1
  • Lihong Bao
    • 1
  • Qingyan Wang
    • 1
  • Guangyu Zhang
    • 1
  • Hongjun Gao
    • 1
    • 2
  • Zuyan Xu
    • 3
  • Xingjiang Zhou
    • 1
    • 2
    • 4
    • 5
    Email author
  • Guodong Liu
    • 1
    • 4
    Email author
  1. 1.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  4. 4.Songshan Lake Materials LaboratoryDongguanChina
  5. 5.Beijing Academy of Quantum Information SciencesBeijingChina

Personalised recommendations