Magnetically recyclable Sm2Co17/Cu catalyst to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline under room temperature

  • Zhenhui Ma
  • Hu Liu
  • Ming YueEmail author
Research Article


Using non-noble metal catalysts to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline is extremely attractive due to the important applications of aromatic amines. However, the separation and recycle of catalytic particles to sustainably catalyze are still challenging on account of their small size. In this communication, we report a novel magnetically recyclable catalyst of Sm2Co17/Cu to chemoselectively reduce 3-nitrostyrene into 3-vinylaniline by activating ammonia borane (AB) to yield hydrogen. The Sm2Co17/Cu, composited of 180 nm Sm2Co17 nanomagnet and 10 nm Cu catalyst nanoparticles, shows a high conversion (98%) and a high selectivity (99%) for 3-nitrostyrene under ultrasonic concussion. More importantly, they are easily collected by self-separation method without any magnetic field. As a consequence, the excellent recyclable feature is acquired even underwent 10 cycles. Our approach provides a green strategy to synthesize magnetically recyclable catalysts.


Sm2Co17/Cu chemoselective catalysis 3-nitrostyrene magnetic recycle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work was supported by the National Natural Science Foundation of China (Nos. 51701109 and 51806115), Natural Science Foundation of Beijing Municipality, China (No. 2192007), the China Postdoctoral Science Foundation (No. 2018M641132), International S&T Cooperation Program of China (No. 2015DFG52020), Key Program of National Natural Science Foundation of China (51331003), and Program of Disciplines Construction in Beijing (No. PXM2019_014204_500031).

Supplementary material

12274_2019_2555_MOESM1_ESM.pdf (1.5 mb)
Magnetically recyclable Sm2Co17/Cu catalyst to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline under room temperature


  1. [1]
    Wienhöfer, G.; Sorribes, I.; Boddien, A.; Westerhaus, F.; Junge, K.; Junge, H.; Llusar, R.; Beller, M. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base. J. Am. Chem. Soc.2011, 133, 12875–12879.CrossRefGoogle Scholar
  2. [2]
    Pingen, D.; Müller, C.; Vogt, D. Direct amination of secondary alcohols using ammonia. Angew. Chem., Int. Ed.2010, 49, 8130–8133.CrossRefGoogle Scholar
  3. [3]
    Tafesh, A. M.; Weiguny, J. A review of the selective catalytic reduction of aromatic nitro compounds into aromatic amines, isocyanates, carbamates, and ureas using CO. Chem. Rev.1996, 96, 2035–2052.CrossRefGoogle Scholar
  4. [4]
    Ghimire, P. P.; Zhang, L. P.; Kinga, U. A.; Guo, Q. Y.; Jiang, B. J.; Jaroniec, M. Development of nickel-incorporated MCM-41–carbon composites and their application in nitrophenol reduction. J. Mater. Chem. A2019, 7, 9618–9628.CrossRefGoogle Scholar
  5. [5]
    Song, J. J.; Huang, Z. F.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions. Appl. Catal. B: Environ.2018, 227, 386–408.CrossRefGoogle Scholar
  6. [6]
    Tan, Y.; Liu, X. Y.; Zhang, L. L.; Wang, A. Q.; Li, L.; Pan, X. L.; Miao, S.; Haruta, M.; Wei, H. S.; Wang, H. et al. ZnAl-hydrotalcite-supported Au25 nanoclusters as precatalysts for chemoselective hydrogenation of 3-nitrostyrene. Angew. Chem., Int. Ed.2017, 56, 2709–2713.CrossRefGoogle Scholar
  7. [7]
    Dhiman, M.; Polshettiwar, V. Ultrasmall nanoparticles and pseudo-single atoms of platinum supported on fibrous nanosilica (KCC-1/Pt): Engineering selectivity of hydrogenation reactions. J. Mater. Chem. A2016, 4, 12416–12424.CrossRefGoogle Scholar
  8. [8]
    Furukawa, S.; Yoshida, Y.; Komatsu, T. Chemoselective hydrogenation of nitrostyrene to aminostyrene over Pd- and Rh-based intermetallic compounds. ACS Catal.2014, 4, 1441–1450.CrossRefGoogle Scholar
  9. [9]
    Wang, L.; Zhang, J.; Wang, H.; Shao, Y.; Liu, X. H.; Wang, Y. Q.; Lewis, J. P.; Xiao, F. S. Activity and selectivity in nitroarene hydrogenation over Au nanoparticles on the edge/corner of anatase. ACS Catal.2016, 6, 4110–4116.CrossRefGoogle Scholar
  10. [10]
    Camacho-Bunquin, J.; Ferrandon, M.; Sohn, H.; Yang, D. L.; Liu, C.; Ignacio-de Leon, P. A.; Perras, F. A.; Pruski, M.; Stair, P. C.; Delferro, M. Chemoselective hydrogenation with supported organoplatinum(IV) catalyst on Zn(II)-modified silica. J. Am. Chem. Soc.2018, 140, 3940–3951.CrossRefGoogle Scholar
  11. [11]
    Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun.2014, 5, 5634.CrossRefGoogle Scholar
  12. [12]
    Tamiolakis, I.; Fountoulaki, S.; Vordos, N.; Lykakis, I. N.; Armatas, G. S. Mesoporous Au–TiO2 nanoparticle assemblies as efficient catalysts for the chemoselective reduction of nitro compounds. J. Mater. Chem. A2013, 1, 14311–14319.CrossRefGoogle Scholar
  13. [13]
    Corma, A.; Serna, P.; Concepcion, P.; Calvino, J. J. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc.2008, 130, 8748–8753.CrossRefGoogle Scholar
  14. [14]
    Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H. M.; Schunemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science2013, 342, 1073–1076.CrossRefGoogle Scholar
  15. [15]
    Westerhaus, F. A.; Jagadeesh, R. V.; Wienhöfer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem.2013, 5, 537–543.CrossRefGoogle Scholar
  16. [16]
    Yang, B.; Zhang, Q. K.; Ma, X. Y.; Kang, J. Q.; Shi, J. M.; Tang, B. Preparation of a magnetically recoverable nanocatalyst via cobalt-doped Fe3O4 nanoparticles and its application in the hydrogenation of nitroarenes. Nano Res.2016, 9, 1879–1890.CrossRefGoogle Scholar
  17. [17]
    Assa, F.; Jafarizadeh-Malmiri, H.; Ajamein; H.; Anarjan; N.; Vaghari, H.; Sayyar, Z.; Berenjian, A. A biotechnological perspective on the application of iron oxide nanoparticles. Nano Res.2016, 9, 2203–2225.CrossRefGoogle Scholar
  18. [18]
    Ai, Y. J; Hu, Z. N.; Shao, Z. X.; Qi, L.; Liu, L.; Zhou, J. J.; Sun, H. B.; Liang, Q. L. Egg-like magnetically immobilized nanospheres: A long-lived catalyst model for the hydrogen transfer reaction in a continuous-flow reactor. Nano Res.2018, 11, 287–299.CrossRefGoogle Scholar
  19. [19]
    Qin, Z.; Ma, Z. H.; Zhi, J. K.; Fu, Y. L. A facile synthesis of magnetite single-crystal particles by employing GO sheets as template for promising application in magnetic fluid. Rare Met.2019, 38, 764–769.CrossRefGoogle Scholar
  20. [20]
    Ma, Z. H.; Tian, H.; Cong, L. Y.; Wu, Q.; Yue, M.; Sun, S. H. A flamereaction method for the large-scale synthesis of high-performance SmxCoy nanomagnets. Angew. Chem., Int. Ed.2019, 58, 14509–14512.CrossRefGoogle Scholar
  21. [21]
    Ma, Z. H.; Yue, M.; Wu, Q.; Li, C. L.; Yu, Y. S. Designing shape anisotropic SmCo5 particles by chemical synthesis to reveal the morphological evolution mechanism. Nanoscale2018, 10, 10377–10382.CrossRefGoogle Scholar
  22. [22]
    Zhang, T. L.; Liu, H. Y.; Ma, Z. H.; Jiang, C. B. Single crystal growth and magnetic properties of 2:17-type SmCo magnets. J. Alloys Compd.2015, 637, 253–256.CrossRefGoogle Scholar
  23. [23]
    Ma, Z. H.; Zhang, T. L.; Wang, H.; Jiang, C. B. Synthesis of SmCo5 nanoparticles with small size and high performance by hydrogenation technique. Rare Met.2018, 37, 1021–1026.CrossRefGoogle Scholar
  24. [24]
    Ma, Z. H.; Zhang, T. L.; Jiang, C. B. A facile synthesis of high performance SmCo5 nanoparticles. Chem. Eng. J.2015, 264, 610–616.CrossRefGoogle Scholar
  25. [25]
    Ma, Z. H.; Yang, S. X.; Zhang, T. L.; Jiang, C. B. The chemical synthesis of SmCo5 single-crystal particles with small size and high performance. Chem. Eng. J.2016, 304, 993–999.CrossRefGoogle Scholar
  26. [26]
    Ma, Z. H.; Liang, J. M.; Ma, W.; Cong, L. Y.; Wu, Q.; Yue, M. Chemically synthesized anisotropic SmCo5 nanomagnets with a large energy product. Nanoscale2019, 11, 12484–12488.CrossRefGoogle Scholar
  27. [27]
    Shen, M. Q.; Liu, H.; Yu, C.; Yin, Z. Y.; Muzzio, M.; Li, J. R.; Xi, Z.; Yu, Y. S.; Sun, S. H. Room-temperature chemoselective reduction of 3-nitrostyrene to 3-vinylaniline by ammonia borane over Cu nanoparticles. J. Am. Chem. Soc.2018, 140, 16460–16463.CrossRefGoogle Scholar
  28. [28]
    Liu, H.; Yu, Y. S.; Yang, W. W.; Lei, W. J.; Gao, M. Y.; Guo, S. J. High-density defects on PdAg nanowire networks as catalytic hot spots for efficient dehydrogenation of formic acid and reduction of nitrate. Nanoscale2017, 9, 9305–9309.CrossRefGoogle Scholar
  29. [29]
    Liu, H.; Guo, Y.; Yu, Y. S.; Yang, W. W.; Shen, M. Q.; Liu, X. Y.; Geng, S.; Li, J. R.; Yu, C.; Yin, Z. Y. et al. Surface Pd-rich PdAg nanowires as highly efficient catalysts for dehydrogenation of formic acid and subsequent hydrogenation of adiponitrile. J. Mater. Chem. A2018, 6, 17323–17328.CrossRefGoogle Scholar
  30. [30]
    Liu, H.; Liu, X. Y.; Yu, Y. S.; Yang, W. W.; Li, J.; Feng, M.; Li, H. B. Bifunctional networked Ag/AgPd core/shell nanowires for the highly efficient dehydrogenation of formic acid and subsequent reduction of nitrate and nitrite in water. J. Mater. Chem. A2018, 6, 4611–4616.CrossRefGoogle Scholar
  31. [31]
    Chen, G. X.; Xu, C. F.; Huang, X. Q.; Ye, J. Y.; Gu, L.; Li, G.; Tang, Z. C.; Wu, B. H.; Yang, H. Y.; Zhao, Z. P. et al. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater.2016, 15, 564–569.CrossRefGoogle Scholar
  32. [32]
    Liu, H.; Huang, B. L.; Zhou, J. H.; Wang, K.; Yu, Y. S.; Yang, W. W.; Guo, S. J. Enhanced electron transfer and light absorption on imino polymer capped PdAg nanowire networks for efficient room-temperature dehydrogenation of formic acid. J. Mater. Chem. A2018, 6, 1979–1984.CrossRefGoogle Scholar
  33. [33]
    Han, A. J.; Zhang, J.; Sun, W. M.; Chen, W. X.; Zhang, S. L.; Han, Y. H.; Feng, Q. C.; Zheng, L. R.; Gu, L.; Chen C. et al. Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nat. Commun.2019, 10, 3787.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Ministry of Education of ChinaBeijing University of TechnologyBeijingChina
  2. 2.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations